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Abstract: In motion control applications, such as machine tools and high-precision positioning stages
for the semiconductor or flat panel industries, it is becoming common to place sensors on not only the
motor side (collocated side) but also the load side (non-collocated side). The load side information
enables compensation of transmission dynamics, such as friction or backlash. However, due to the
phase lag of the load side frequency characteristics, it is difficult to increase the feedback bandwidth.
To address this problem, this paper proposes a feedback controller design method based on frequency
response data that utilizes both collocated and non-collocated sensor information. Experimental results
show that the proposed method effectively suppresses the input disturbance. Furthermore, the proposed
optimization requires less calculation time compared with nonlinear optimization with random initial
values and exhibits better performance.
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1. INTRODUCTION

In high-precision motion control systems, such as machine
tools and positioning stages for the semiconductor or flat panel
industries, it is becoming increasingly common to place sensors
on not only the driving side (collocated side) but also the load
side (non-collocated side) (Sakata et al., 2014; Oomen, 2018).
There are two common ways to close the feedback (FB) loop,
namely semi-closed loop control and full-closed loop control
(Yamaguchi et al., 2011). The semi-closed loop control sys-
tem feeds back the sensor information only from the motor
side, while the full-closed loop control system feeds back the
sensor information from the motor side as well as from the
load side (Hu et al., 2014), which is located close to the point
of interest (Butler, 2011). The full-closed loop control system
generally shows better performance, especially in the steady-
state because it feeds back information that includes transmis-
sion part dynamics, such as friction or backlash. However, it is
difficult for the full closed-loop control to have a high feedback
bandwidth because the information from the load side (non-
collocated side) contains a phase lag (Hara et al., 2008).

Herein, a method called self-resonance cancellation (SRC),
which aims to achieve high-feedback bandwidth by utilizing
both collocated and non-collocated sensor information, is pro-
posed (Sakata et al., 2014). In short, this method 1) models
the system as a fourth order system that contains a rigid body
mode and first resonance mode, 2) calculates the center of
gravity position by interior division of the two sensors (“res-
onance cancellation”), and 3) designs a high-bandwidth feed-
back controller for an imaginary system without the first res-
onance mode. However, this method does not ensure position
accuracy of the load side because it does not directly feedback
the load side information. To address this problem, the method
is extended to a complementary filter-based method (Sakata
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et al., 2014) and SRC-P-PI control (Hasegawa et al., 2017).
The SRC-P-PI control has an inner proportional-integral (PI)
velocity feedback with SRC and an outer proportional (P) posi-
tion feedback. However, the above methods need a parametric
model including the first resonance and they do not explicitly
discuss design methods with multiple resonances.

Feedback controller tuning methods based on frequency re-
sponse data, such as the Ziegler–Nichols method, have been ex-
tensively studied (Ziegler and Nichols, 1942; Åström and Mur-
ray, 2008). Furthermore, optimization-based tuning methods,
such as the genetic algorithm (Tang et al., 2001), Nelder–Mead
method (Lee et al., 1985), and particle swarm optimization
(Gaing, 2004), have been proposed. Convex optimization-based
methods for a fixed structure controller have been proposed,
including an open loop shaping method using a desired open
loop transfer function (Karimi and Galdos, 2010) and a sequen-
tial linearization method using the concave-convex procedure
(CCCP) (Hast et al., 2013; Nakamura et al., 2016). For the
above mentioned methods, there are only limited discussions
on how to utilize both collocated and non-collocated sensor
information to design fixed structure controllers.

This paper proposes a feedback controller tuning method with
high disturbance suppression performance for a system with
collocated and non-collocated sensors. The proposed method
requires the following information: 1) single input double out-
put frequency response data and 2) rigid body model (nominal
mass and damping coefficient). The proposed controller has a
cascaded structure with a collocated side PI velocity controller
with SRC and a non-collocated side P position controller. It
has four non-affine tuning parameters optimized through the
1) pole-placement method, 2) sequential linearization (CCCP)
method, and 3) Nelder–Mead method.

In general, nonlinear optimization problems have strong ini-
tial value dependence. We also demonstrate that the proposed
method achieves higher performance with shorter calculation
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Fig. 1. High-precision positioning stage (Hara et al., 2008).
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Fig. 2. Frequency response of the plant (input current to veloci-
ties). The frequency response data and first order nominal
model Pn are used for controller design.

time than the Nelder–Mead method with 1000 pattern randomly
selected initial values. This paper also compares the proposed
method with proportional-integral-derivative (PID) control for
the non-collocated position to show the effectiveness of the
SRC-P-PI control structure. The PID gains and the time con-
stant of pseudo difference are optimized similar to the proposed
procedure: 1) pole-placement method, 2) sequential lineariza-
tion method, and 3) Nelder–Mead method. Note that the PID
controller has four tuning parameters, which is the same num-
ber of tuning parameters as that for SRC-P-PI control.

2. EXPERIMENTAL SETUP

A one-axis high-precision positioning stage, as shown in Fig.
1, is used as an experimental setup. The input is a pair of linear
motors at the carriage. The output is two encoders located at
the carriage and table. There is a spring between the carriage
and table. Therefore, the encoder at the carriage is a collocated
side sensor, and the encoder at the table is a non-collocated side
sensor. Here, the point of interest is assumed as the table side
position.

Frequency responses from the input current to both the sides’
velocities are shown in Fig. 2. This is obtained through fre-
quency domain identification (Pintelon and Schoukens, 2012).
The collocated side response Pv1 has an anti-resonance first and
a resonance later. In contrast, the non-collocated side response
Pv2 has a resonance first followed by an anti-resonance.
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Fig. 3. Block diagrams of the compared controller configura-
tions.

A first-order nominal model Pn is

Pn(s) =
1

Mns + Bn
(1)

Mn = 0.412, Bn = 0.866. (2)

3. SRC-P-PI CONTROLLER DESIGN

In this section, the proposed SRC-P-PI controller design using
frequency response data is described. The block diagram repre-
sentation is shown in Fig. 3(a).

The transfer function of the plant with SRC is

Pvsrc( jωk, α) = (1 − α)Pv1( jωk) + αPv2( jωk), (3)

where ωk and k denote the measured frequency point and
the data number, respectively. Hence, the open loop transfer
function is represented by

Lvsrc( jωk, ρ, α) = [(1 − α) α]

Pv1( jωk)

Pv2( jωk)

 [kvp kvi]


1
1

jωk

 , (4)

where ρ = [kvp, kvi]� denotes the PI gain. It is not affine for
ρ and α; therefore, the linear optimization is not applicable.
Hence, the pole-placement and sequential linearization are ap-
plied with a fixed α first, and then, the Nelder–Mead method
(Nelder and Mead, 1965; Lagarias et al., 1998), which is one
of the nonlinear optimization methods, is applied to optimize ρ
and α at the same time.

Step 1. Initial guess of α for the first resonance cancellation

The original idea of SRC (Sakata et al., 2014) “cancels” the first
resonance mode. The initial guess of α is obtained through an
optimization problem to make the gain flat between ωkmin and
ωkmax , where ωkmin and ωkmax are around the first resonance mode
frequency.

minimize
α

‖ jωk(1 − α)Pv1( jωk) + jωkαPv2( jωk)‖∞ (5)

k ∈ [kmin, kmax] (6)
subject to 0 ≤ α ≤ 1 (7)
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Step 2. Initial Cpi gain calculation by the pole-placement

This section calculates the PI gain by pole-placement for the
first order model formulated in (1). A transfer function of the
velocity PI controller is

Cpi(s) = kvp +
kvi
s
. (8)

According to (1) and (8), the controller that places the velocity
closed-loop poles of the nominal model (1) at (s + ωv)2 is
(Goodwin et al., 2000)

kvp = 2ωvMn − Bn, kvi = ω2
vMn. (9)

The open loop frequency response is L( jωk, ωv) =
P( jωk)C( jωk, ωv). ωv is maximized by the dichotomy method
as follows:

maximize ωv (10)

subject to rm − |L( jωk, ωv) + σ| ≤ 0, ∀k, (11)
where α = αsrc. rm and σ denote the circle condition (Maeda
and Iwasaki, 2014) for gain and phase margins. The prohibited
circle in the Nyquist plot with a center at (−σ, j0) and radius rm
is given by 

σ =
g2

m − 1
2gm(gm cosΦm − 1)

rm =
(gm − 1)2 + 2gm(1 − cosΦm)

2gm(gm cosΦm − 1)

, (12)

where Φm and gm denote the phase and gain margins, respec-
tively.

A designed case referred to as SRC-P-PI (Case 1) skips Steps 3
and 4 and directly applies Step 5.

Step 3. Cpi optimization through sequential linearization

Step 3 optimizes Cpi through sequential linearization. The gains
obtained in Step 2 are used as the initial gains. To linearize the
problem, α is fixed as αsrc.

The controller and open loop frequency responses are given as
Cpi( jωk, ρ) = ρ�φ( jωk) (13)

L( jωk, ρ) = P( jωk)Cpi( jωk, ρ), (14)

where φ( jωk) = [1, 1
jωk

]� denotes the basis function of the
controller.

The optimization problem is formulated as
maximize
ρ

Ωgc (15)

subject to

∣∣∣∣∣∣
Ωgc

jωk

∣∣∣∣∣∣
m

− |1 + L( jωk, ρ)| ≤ 0, ∀k (16)

rm − |L( jωk, ρ) + σ| ≤ 0, ∀k (17)
0 ≤ ρ (18)

Ωgc in (15) is a constraint for the sensitivity function in (16).
Ωgc denotes a 0 dB cross-over frequency of the sensitivity func-
tion. By maximizing Ωgc, the gain of the sensitivity function
in the low-frequency range is minimized. Equation (17) is the
circle condition of the gain and phase margins. Equation (18) is
a constraint to obtain a stable controller.

Equations (16) and (17) are the differences in convex functions
and they are not convex. However, by applying a linearization
around the current solution point, the new feasible set becomes
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Fig. 4. Initial value of α for SRC determined by the optimiza-
tion (5)–(7).

a convex subset of the original feasible set (Yuille and Rangara-
jan, 2003; Hast et al., 2013; Nakamura et al., 2016). Equations
(16) and (17) are relaxed as∣∣∣∣∣∣
Ωgc

jωk

∣∣∣∣∣∣
m

− R
( (Lj( jωk, ρ j) + 1)∗

|Lj( jωk, ρ j) + 1| (L( jωk, ρ) + 1)
)
≤ 0, (19)

rm − R
( (Lj( jωk, ρ j) + σ)∗

|Lj( jωk, ρ j) + σ|
(L( jωk, ρ) + σ)

)
≤ 0 (20)

where R and ∗ denote the real part and complex conjugate
respectively. Lj( jωk, ρ j) denotes the open loop frequency re-
sponse of the previous iteration. Therefore, by iterating the
procedure, the solution will converge to a saddle point or a local
minimum. This procedure is referred to as the concave–convex
procedure (CCCP) (Yuille and Rangarajan, 2003).

Ωgc itself is maximized by a dichotomy method. The feasibility
problem is solved by YALMIP (Löfberg, 2004) and MOSEK
(MOSEK ApS, 2017).

A designed case referred to as SRC-P-PI (Case 2) skips Step 4
and directly applies Step 5.

Step 4. Nonlinear optimization through the Nelder–Mead
method

Step 4 applies the Nelder–Mead method to optimize Cpi and α
at the same time by the following optimization problem:

maximize
ρ,α

Ωgc (21)

subject to

∣∣∣∣∣∣
Ωgc

jωk

∣∣∣∣∣∣
m

− |1 + L( jωk, ρ, α)| ≤ 0, ∀k (22)

rm − |L( jωk, ρ, α) + σ| ≤ 0, ∀k (23)
0 ≤ ρ (24)
0 ≤ α ≤ 1 (25)

The Cpi gains obtained in Step 3 and αsrc obtained in Step 1 are
used as the initial values for the Nelder–Mead method.

The optimized α by the Nelder–Mead method is denoted as
αopt. A designed case referred to as SRC-P-PI (Case 3) applies
Step 5 after Step 4.

Step 5. Cp maximization by dichotomy method

This step optimizes the outer loop position controller Cp = kpp.
The open loop frequency response of the position controller
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Step 2. Initial Cpi gain calculation by the pole-placement

This section calculates the PI gain by pole-placement for the
first order model formulated in (1). A transfer function of the
velocity PI controller is

Cpi(s) = kvp +
kvi
s
. (8)

According to (1) and (8), the controller that places the velocity
closed-loop poles of the nominal model (1) at (s + ωv)2 is
(Goodwin et al., 2000)

kvp = 2ωvMn − Bn, kvi = ω2
vMn. (9)

The open loop frequency response is L( jωk, ωv) =
P( jωk)C( jωk, ωv). ωv is maximized by the dichotomy method
as follows:

maximize ωv (10)

subject to rm − |L( jωk, ωv) + σ| ≤ 0, ∀k, (11)
where α = αsrc. rm and σ denote the circle condition (Maeda
and Iwasaki, 2014) for gain and phase margins. The prohibited
circle in the Nyquist plot with a center at (−σ, j0) and radius rm
is given by 

σ =
g2

m − 1
2gm(gm cosΦm − 1)

rm =
(gm − 1)2 + 2gm(1 − cosΦm)

2gm(gm cosΦm − 1)

, (12)

where Φm and gm denote the phase and gain margins, respec-
tively.

A designed case referred to as SRC-P-PI (Case 1) skips Steps 3
and 4 and directly applies Step 5.

Step 3. Cpi optimization through sequential linearization

Step 3 optimizes Cpi through sequential linearization. The gains
obtained in Step 2 are used as the initial gains. To linearize the
problem, α is fixed as αsrc.

The controller and open loop frequency responses are given as
Cpi( jωk, ρ) = ρ�φ( jωk) (13)

L( jωk, ρ) = P( jωk)Cpi( jωk, ρ), (14)

where φ( jωk) = [1, 1
jωk

]� denotes the basis function of the
controller.

The optimization problem is formulated as
maximize
ρ

Ωgc (15)

subject to

∣∣∣∣∣∣
Ωgc

jωk

∣∣∣∣∣∣
m

− |1 + L( jωk, ρ)| ≤ 0, ∀k (16)

rm − |L( jωk, ρ) + σ| ≤ 0, ∀k (17)
0 ≤ ρ (18)

Ωgc in (15) is a constraint for the sensitivity function in (16).
Ωgc denotes a 0 dB cross-over frequency of the sensitivity func-
tion. By maximizing Ωgc, the gain of the sensitivity function
in the low-frequency range is minimized. Equation (17) is the
circle condition of the gain and phase margins. Equation (18) is
a constraint to obtain a stable controller.

Equations (16) and (17) are the differences in convex functions
and they are not convex. However, by applying a linearization
around the current solution point, the new feasible set becomes
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Fig. 4. Initial value of α for SRC determined by the optimiza-
tion (5)–(7).

a convex subset of the original feasible set (Yuille and Rangara-
jan, 2003; Hast et al., 2013; Nakamura et al., 2016). Equations
(16) and (17) are relaxed as∣∣∣∣∣∣
Ωgc

jωk

∣∣∣∣∣∣
m

− R
( (Lj( jωk, ρ j) + 1)∗

|Lj( jωk, ρ j) + 1| (L( jωk, ρ) + 1)
)
≤ 0, (19)

rm − R
( (Lj( jωk, ρ j) + σ)∗

|Lj( jωk, ρ j) + σ|
(L( jωk, ρ) + σ)

)
≤ 0 (20)

where R and ∗ denote the real part and complex conjugate
respectively. Lj( jωk, ρ j) denotes the open loop frequency re-
sponse of the previous iteration. Therefore, by iterating the
procedure, the solution will converge to a saddle point or a local
minimum. This procedure is referred to as the concave–convex
procedure (CCCP) (Yuille and Rangarajan, 2003).

Ωgc itself is maximized by a dichotomy method. The feasibility
problem is solved by YALMIP (Löfberg, 2004) and MOSEK
(MOSEK ApS, 2017).

A designed case referred to as SRC-P-PI (Case 2) skips Step 4
and directly applies Step 5.

Step 4. Nonlinear optimization through the Nelder–Mead
method

Step 4 applies the Nelder–Mead method to optimize Cpi and α
at the same time by the following optimization problem:

maximize
ρ,α

Ωgc (21)

subject to

∣∣∣∣∣∣
Ωgc

jωk

∣∣∣∣∣∣
m

− |1 + L( jωk, ρ, α)| ≤ 0, ∀k (22)

rm − |L( jωk, ρ, α) + σ| ≤ 0, ∀k (23)
0 ≤ ρ (24)
0 ≤ α ≤ 1 (25)

The Cpi gains obtained in Step 3 and αsrc obtained in Step 1 are
used as the initial values for the Nelder–Mead method.

The optimized α by the Nelder–Mead method is denoted as
αopt. A designed case referred to as SRC-P-PI (Case 3) applies
Step 5 after Step 4.

Step 5. Cp maximization by dichotomy method

This step optimizes the outer loop position controller Cp = kpp.
The open loop frequency response of the position controller
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(b) Sensitivity function.

Fig. 5. Design results of the velocity loop (SRC-P-PI control).

Lp( jω, kpp) is formulated as

Lp( jωk, kpp) = kpp

Cpi( jωk) Pv2( jωk)
jωk

1 + Lvsrc( jωk, ρ, α)
(26)

kpp is maximized by the dichotomy method with the following
optimization:

maximize kpp (27)

subject to rm − |Lp( jωk, kpp) + σ| ≤ 0, ∀k (28)

4. EXPERIMENTAL VALIDATION

Experiments are performed using the high-precision position-
ing stage shown in Fig. 1. The gain and phase margins are set
as 6 dB and 30◦, respectively. m in (16) is set as 2. The sampling
period is set as 400 µs, and the 1 A input disturbance is applied
at t = 0.0 s.

4.1 Design results of the proposed method

In Step 1, the optimal α, which minimizes the gain of the first
resonance mode, is obtained as αsrc = 0.484. According to Fig.
2, ωkmin = 22.4 × 2π [rad/s] and ωkmax = 32.6 × 2π [rad/s]. A
frequency response of the plant with SRC is shown in Fig. 4;
this shows that the gain and phase characteristics are almost flat
between ωkmin and ωkmax .

The design results of SRC-P-PI control are shown in Tab. 1
and Fig. 5. The frequency response from the control input to
the velocity is shown in Fig. 6. From Fig. 6, α = αopt in
SRC-P-PI (Case 3) results in incomplete cancellation of the
first resonance. This is because, according to Fig. 2, the gain
of the secondary resonance decreases when α approaches 1. In
addition, Fig. 5(a) shows that the circle of the first and second
resonances of SRC-P-PI (Case 3) have the same radius. As a
result, the bandwidth is increased, as shown in Fig. 5(b).

Experimental results of the step disturbance suppression are
shown in Fig. 7. According to Fig. 7(a) and Tab. 2, SRC-P-
PI (Case 3) shows the best tracking performance in terms of
infinity and 2-norm tracking error.

4.2 Initial value dependency of Nelder–Mead method

In the proposed method, the initial value of the Nelder–Mead
method is given by the stepwise optimization with the pole

placement method and sequential linearization. This section
compares the results of the Nelder–Mead method with random
initial values to demonstrate the effectiveness of the proposed
procedure.

1000 pattern randomly selected values in the range of 0 ≤
α ≤ 1, 0 ≤ kvp ≤ 1, 0 ≤ kvi ≤ 10 are used as the initial
values. The optimization results ofΩgc are shown in Fig. 8. The
maximum Ωgc case is referred to as “SRC-P-PI (NM1000)”.
Tab. 1 shows that SRC-P-PI (NM1000) converges a smallerΩgc
when compared to the results of SRC-P-PI (Case 3).

The calculation time of both methods is shown in Tab. 3.
NM1000 (Parallel) is calculated using MATLAB’s parfor
to utilize multiple CPU cores. This shows that the proposed
method achieves better performance with a shorter calculation
time. Moreover, even when using the laptop computer, the
proposed method completed the calculation in 26 s, and it is
thus also practical in terms of calculation time. Fig. 9 and Tab. 2
show the experimental results of the input disturbance rejection.
Tracking performance of SRC-P-PI (Case 3) outperforms that
of SRC-P-PI (NM1000).

4.3 Comparison with PID control

This section shows a comparison with PID control shown
in Fig. 3(b) to demonstrate the superiority of the controller
structure of the SRC-P-PI control. Both design methods use
frequency response data and low-order nominal models. The
gain margin and phase margin are set as the same as in the
SRC-P-PI control 6 dB and 30◦, respectively. The weighting
m for sensitivity function is set as 3, considering the integrators
of the plant and controller. The parameter of the PID controller
is optimized through the pole placement method, the sequential
linearization method, and the Nelder–Mead method.

Fig. 10 and Tab. 2 show a comparison of the two methods. This
indicates that sufficient disturbance suppression performance
cannot be obtained only with the non-collocated sensor. The
above result shows the superiority of the controller structure of
SRC-P-PI control and the effectiveness of the proposed tuning
method.

5. CONCLUSION

This paper proposed a tuning method for P-PI control utilizing
multiple sensors. An advantage of the proposed method is that
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Fig. 6. Frequency response of the plant
with SRC.
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Fig. 7. Experimental results for step disturbance rejection (SRC-P-PI control).
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Fig. 10. Experimental results for step disturbance rejection (SRC-P-PI and PID control).

Table 1. Design results (SRC-P-PI control).

α kvp kvi ωv,Ωgc [rad/s] kpp Note
SRC-P-PI (Case 1) 0.484 17.3 194 ωv = 21.3 50.4 PP
SRC-P-PI (Case 2) 0.484 15.1 1710 Ωgc = 35.2 16.6 PP→CCCP
SRC-P-PI (Case 3) 0.571 18.8 2160 Ωgc = 39.5 20.3 PP→CCCP→NM

SRC-P-PI (NM1000) 0.0177 9.03 524 Ωgc = 16.9 9.27 See sec. 4.2
PP: Pole Placement, CCCP: Concave–Convex Procedure, NM: Nelder–Mead method
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Fig. 6. Frequency response of the plant
with SRC.
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Fig. 9. Experimental results for step disturbance rejection (SRC-P-PI (Case 3,
NM1000)).
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Fig. 10. Experimental results for step disturbance rejection (SRC-P-PI and PID control).

Table 1. Design results (SRC-P-PI control).

α kvp kvi ωv,Ωgc [rad/s] kpp Note
SRC-P-PI (Case 1) 0.484 17.3 194 ωv = 21.3 50.4 PP
SRC-P-PI (Case 2) 0.484 15.1 1710 Ωgc = 35.2 16.6 PP→CCCP
SRC-P-PI (Case 3) 0.571 18.8 2160 Ωgc = 39.5 20.3 PP→CCCP→NM

SRC-P-PI (NM1000) 0.0177 9.03 524 Ωgc = 16.9 9.27 See sec. 4.2
PP: Pole Placement, CCCP: Concave–Convex Procedure, NM: Nelder–Mead method
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Table 2. Tracking error comparison of the experi-
mental results in mm. Here, () denotes the relative

value compared with SRC-P-PI (Case 3).

Methods ||e||2 ||e||∞
SRC-P-PI (Case 1) 12.7 (2.75) 1.07 (2.05)
SRC-P-PI (Case 2) 6.73 (1.46) 0.656 (1.26)
SRC-P-PI (Case 3) 4.61 (1.00) 0.522 (1.00)
SRC-P-PI (NM1000) 26.5 (5.74) 1.98 (3.78)
PID 37.9 (8.24) 2.63 (5.03)

Table 3. Calculation time comparison.

Laptop computer Desktop computer
CPU (# of cores) Core i7 8550U (4 core) Core i9 9900K (8 core)
Memory 12GB 48GB
NM1000 13279 [s] (221 [min]) 7753 [s] (129 [min])
NM1000 (Parallel) 4764 [s] (79 [min]) 1305 [s] (22 [min])
SRC-P-PI (Case 3) 26 [s] 19 [s]

it does not require the high-order parametric model and only
utilizes the frequency response data and rigid body nominal
model. Hence, the proposed method has the potential to address
the plant perturbations and unstructured dynamics by dealing
with multiple frequency response data measured under different
conditions.

The proposed method employs stepwise optimization with the
pole-placement using a nominal model, sequential linearization
method, and the Nelder–Mead method. The bandwidth is im-
proved by each step. Further, the proposed procedure obtains
high performance with less calculation time compared to the
Nelder–Mead method with 1000 pattern random initial values.
The effectiveness of the controller structure was demonstrated
through comparison with the PID controller optimized by the
same procedure.

The proposed method is practical because it requires only fre-
quency response data and a low-order nominal model, and it is
applicable with multiple sensors. Considering that systems with
multiple encoders are becoming popular, this paper has pro-
posed an effective way to utilize collocated and non-collocated
sensors.
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