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Abstract: Disturbance observer (DOB) has been widely used in industrial field due to it’s simplicity and effectiveness
in rejecting disturbance. The performance of disturbance observer is greatly influenced by the bandwidth of low pass
filter (Q filter). This paper proposes a novel way for optimizing bandwidth of Q filter by considering experimentally
obtained frequency response data (FRD) of plant. By transforming all the nonliner constraints into convex constraints, the
convex optimisation method can be employed to solve this problem easily. The simulation results verified the feasibility
of proposed method and demonstrated that the optimized Q filter can gurantee the disturbance rejection performance.
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1. INTRODUCTION
In industrial applications, unavoidable disturbances

deteriorate the performance of designed control system.
To estimate and compensate the effect of disturbance, dis-
turbance observer has been proposed [1]. As an effective
tool, DOB has been used in various applications, such
as robot manipulators [2], high-speed positioning stage
[3] etc. In disturbance observer configuration, Q filter
is necessary to guarantee the causality of system and the
bandwidth of Q filter is desired to be as high as possible
to ensure satisfactory disturbance rejection performance
in a wide frequency range. However, the bandwidth of Q
filter is limited by system robustness and noise, and thus
can not be shaped freely [4]. Moreover, in case of a non-
minimum phase plant, internal instability due to unstable
zeros sets additional limitation for Q filter design [5].

Various guidelines have been proposed on DOB de-
sign. By multiplying a filter to shape the plant into nom-
inal plant, Q filter’s bandwidth is increased in [6]. State
space representation of plant is used to design Q filter in
[7]. Focusing on closed loop instead of inner DOB loop
to ensure disturbance attenuation performance and robust
stability, Q filter’s design was given in [8]. For non-
minimum phase plant, from the prospective of system ro-
bustness and sensitivity function limitation, the range of
Q filter’s bandwidth has been given in [5] [9] by using
Bode integral theorem and Poisson integral theorem. In
[10], a new filter whose parallel connection with the plant
becomes minimum phase is designed. Then the conven-
tional DOB configuration procedure is employed for the
new system.

The aforementioned methods use the parametric
model of plant (transfer function or state space represen-
tation identified from FRD) which can present the system
dynamics directly. However, since identified paramet-
ric model involves model uncertainties, the robustness of
DOB can be deteriorated. Therefore, in this paper, di-
rect usage of frequency response data based DOB system
design has been explored.

† Xiaoke Wang is the presenter of this paper.

Previous frequency response data based research
mainly focuses on designing linearly parameterized fixed
order feedback controller by loop shaping method. In
[11], authors define margin constraint which is linear with
respect to controllers’ parameters and obtain controller
by linear programming. In [12], non-convex optimization
method is employed to derive controller. Convex opti-
mization has been used to compute robust controllers for
single-input-single-output systems depicted by frequency
response data in [13] which has been applied to specifi-
cally design PID controller in [14]-[15], and further ex-
tended to multi-input-multi-output case in [16]. Based on
this method, Matlab toolbox has been developed in [17].

In this paper, integrating the frequency response data
based loop shaping method into DOB design has been
researched.

1. DOB system for a non-minimum phase plant is
designed based on the frequency response data of
plant. The bandwidth of DOB has been optimized
by employing FRD based loop shaping optimization
method.

2. A general way of deriving convex constraints from
original nonlinear constraints which limit the peak
value of sensitivity function and complementary
sensitivity function was given. By introducing con-
servatism into optimization, this problem can be
changed into convex optimization problem and be
solved easily.

Remaining part of this paper is organized as follows.
Section 2 provides problem formulation, nonlinear con-
straints will be derived in this section followed by math-
ematical transformation to convex constraints in Section
3. Based on the constraints obtained, some simulation re-
sults are given in Section 4. This paper ends by giving
concluding remarks and future work in Section 5.

2. PROBLEM FORMULATION
In the disturbance observer control system as shown

in Fig. 1, Pr and Pn denote real plant and nominal min-
imum phase plant, defined by FRD and transfer func-
tion, respectively. Q represents the to-be-designed filter.



d, d̂, r, y are disturbance external input, estimated distur-
bance, reference input and output, respectively. The feed-
back controller Cfb is assumed to be given.
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Fig. 1 Block diagram of disturbance observer control
system

In this paper, Q is selected as follows in which τ and k
are parameters to be decided and the relative order of Pn

is 2.

Q =
1

τ2s2 + 2kτs+ 1
, (1)

then the following equations can be obtained for the blue
dotted part in Fig. 1.

L = P−1
n Q(1−Q)−1Pr(jω)

=
Pr(jω)P

−1
n

(s2τ2 + 2kτs)
≜ N

D
, (2a)

S =
1

1 + (1−Q)−1QP−1
n Pr(jω)

≜ D

D +N
,

(2b)

y

d
=

Pr(jω)

1 + (1−Q)−1QP−1
n Pr(jω)

= SPr(jω),

(2c)

d̂

d
=

(1−Q)−1QP−1
n Pr(jω)

1 + (1−Q)−1QP−1
n Pr(jω)

= 1− S = T,

(2d)

in which N = Pr(jω)P
−1
n , D = s2τ2 + 2kτs and

L, S, T represent the open loop function, sensitivity
function and complementary sensitivity function, respec-
tively. jω means sequential frequency points.

From above equations, to obtain good disturbance re-
jection performance, the peak value of sensitivity func-
tion should be limited and the 0 dB crossover frequency
of sensitivity function should be as large as possible. By
selecting weighted function for S and T each, the peak
value of sensitivity and complementary sensitivity func-
tion will be no larger than 2 and 1.25 (commonly used in
industrial field). The ωp and ωt will be decided by opti-
mization process.

Wp =
0.5s+ ωp

s
, |WpS| < 1, (3a)

Wm =
s+ ωt

1.25ωt
, |WmT | < 1. (3b)

In summary, the problem can be formulated into

Maximise
τ,k,ωt

ωp (4a)

Subject to 0 < ωp < 1
τ < ωt, (4b)

0.5 < k < 1, (4c)
|WpS| < 1, (4d)
|WmT | < 1. (4e)

For nonlinear constraints in terms of optimization vari-
ables, in next section, transformation to convex con-
straints will be given.

3. MATHEMATICAL
TRANSFORMATION OF NONLINEAR

CONSTRAINTS
In this section, the nonlinear constraints are all trans-

formed into linear function or Linear Matrix Inequality
(LMI) form of variables τ, k, ωs, ωt which can simplify
the problem significantly.

3.1. Preliminary
Schur Complement has been used throughout the pa-

per which is introduced as follows where A,B,C,D are
scalars or matrices and B∗ is the conjugate transpose of
B. [

A B
B∗ D

]
> 0 ⇔ A > 0, A−BD−1B∗ > 0. (5)

Besides, linear approximation is extensively applied to
the following section. The basic concept is to estimate
the value of a function, f(x), near a point x0, using the
following formula in which f ′(x0) means the slope of the
tangent line at x0.

f(x) ≈ f(x0) + f ′(x0)(x− x0) (6)

Additionally, |A| denotes the magnitude of A in which
A is a function.

3.2. Constraint Eq. (4b)

For the left side of Eq.(4b), since
1

τi
is a convex func-

tion, linear approximation can be directly used. The ap-
proximated value is always smaller than the original one,
therefore, if the new inequality holds, the original one
must be satisfied.

1

τi
≥ −τi

τ2i−1

+
2

τi−1
, (7)

in which τi means the current value while τi−1 means the
previous value in the optimization loop (τi−1 > τi).

Therefore, the original constraint can be changed into
following form.

0 < ωp <
−τi
τ2i−1

+
2

τi−1
. (8)

By using Schur Complement, the right side of Eq. (4b)
can be rewritten as the following LMI form.

1

τ
< ωt ⇔

[
ωt 1
1 τ

]
> 0. (9)



3.3. Constraint Eq.(4d)
For the sensitivity constraint, following method is used

to obtain LMI form [18].

|WpS| < 1 ⇔
∣∣∣∣0.5s+ ωp

s
D

∣∣∣∣ < |D +N(jω)| . (10)

Square on (10) both sides and turn this inequality into
matrix inequality form by using Schur Complement.∣∣∣∣0.5s+ ωp

s

∣∣∣∣2 ∣∣∣∣Ds
∣∣∣∣2 <

∣∣∣∣D +N(jω)

s

∣∣∣∣2

⇔


1∣∣D
s

∣∣2 0.5s+ωp

s

(
0.5s+ ωp

s
)∗

∣∣D+N
s

∣∣2
 > 0

=

[
S11 S12

(S12)
∗ S22

]
> 0.

(11)

S11 and S22 still need to be transformed into linear
function of variables. For S11,

S11 =
1

|(sτ2 + 2kτ)|2
=

1

ω2τ4 + 4k2τ2

≥ 1

ω2τ2i τ
2
(i−1) + 4τ2i

=
1

(ω2τ2(i−1) + 4)

1

τ2i
.

(12)

τ−2
i still needs to be dealt with. By using the following

technique, the lower bound of τ−2
i can be obtained .

(τ−2
i − τ−2

i−1)(τ
−2
i − τ−2

i−1) ≥ 0

⇔ τ−4
i ≥ 2τ−2

i−1τ
−2
i − τ−4

i−1 ⇔ τ−2
i ≥ 2τ−2

i−1 − τ−4
i−1τ

2
i .

(13)

By introducing a new variable ϕ1 and making 2τ−2
i−1−

τ−4
i−1τ

2
i > ϕ1 > 0, LMI form constraint can be obtained.[
2τ2i−1 − ϕ1τ

4
i−1 τi

τi 1

]
> 0, ϕ1 > 0. (14)

In conclusion. S11 part can be transformed into

S11 =
1∣∣D
s

∣∣2 ≥ 1

(ω2τ2(i−1) + 4)
ϕ1. (15)

As for S22, the linear approximation was employed.
Let N(jω)

s = xk + ykj,

S22(i) =
∥∥(sτ2i + 2kiτi) + (xk + ykj)

∥∥2
= S22(i−1) + S′

22(τ,i−1)(τi − τi−1)

+ S′
22(k,i−1)(ki − ki−1) = Φ,

(16)

in which

S22(i−1) =
∥∥(sτ2i−1 + 2ki−1τi−1) + (xk + ykj)

∥∥2 ,
(17a)

S′
22(τ,i−1) = 4ωτi−1(τ

2
i−1ω + yk)

+ 4ki−1(2ki−1τi−1 + xk), (17b)
S′
22(k,i−1) = 4τi−1(2ki−1τi−1 + xk). (17c)

In summary, the original nonlinear constraint (4d) can
be transformed into the following LMIs by combining
(11), (12), (14), and (16).

1

(ω2τ2(i−1) + 4)
ϕ1

0.5s+ωp

s

(
0.5s+ ωp

s
)∗ Φ

 > 0, (18a)

[
2τ2i−1 − ϕ1τ

4
i−1 τi

τi 1

]
> 0, ϕ1 > 0. (18b)

3.4. Constraint Eq. (4e)
For complementary sensitivity constraint, by follow-

ing similar process as dealing with previous one, the de-
sired LMI form constraint can be obtained.

|WmT | < 1 ⇔
∣∣∣∣ s+ ωt

1.25ωt

∣∣∣∣ < ∣∣∣∣D +N(jω)

N(jω)

∣∣∣∣ . (19)

After squaring both sides and using Schur Complement,
the following results can be developed.

∣∣∣∣ s+ ωt

1.25ωt

∣∣∣∣2 <

∣∣∣∣D +N(jω)

N(jω)

∣∣∣∣2 ,
⇔

|s+ ωt|2
∣∣∣N(jω)

s

∣∣∣2
|1.25ωt|2

<

∣∣∣∣D +N(jω)

s

∣∣∣∣2 ,

⇔


|ωt|2

∣∣∣N(jω)
s

∣∣∣ (s+ ωt)

1.25
(
∣∣∣N(jω)

s

∣∣∣ (s+ ωt))
∗

1.25

∣∣∣∣D +N(jω)

s

∣∣∣∣2
 > 0,

=

[
T11 T12

(T12)
∗ T22

]
> 0.

(20)

As before, T11 and T22 needs transformation. Since
T22 = S22, this part is omitted due to the repeatence. For
T11, the linear approximation is used.

ω2
t(i) ≥ 2ωt(i−1)ωt(i) − ω2

t(i−1), (21)

in which ωt(i) is the current value while ωt(i−1) repre-
sents for the previous one in optimization loop.

Combining (16), (20) and (21), the original nonlinear
constraint (4e) can be changed into

2ωt(i−1)ωt(i) − ω2
t(i−1)

∣∣∣N(jω)
s

∣∣∣ (s+ ωt(i))

1.25
(
∣∣∣N(jω)

s

∣∣∣ (s+ ωt(i)))
∗

1.25
Φ

 > 0.

(22)

3.5. Constraints summary
After finishing all the process mentioned above, the

original constraints have been formulated into a new form



as follows.

Maximise
τ,k,ωt,ϕ1

ωp (23a)

Subject to ωp > 0, ϕ1 > 0, ωp < −τi
τ2
i−1

+ 2
τi−1

, (23b)

0.5 < k < 1,

[
2τ2i−1 − ϕ1τ

4
i−1 τi

τi 1

]
> 0, (23c)

[
ωt 1
1 τ

]
> 0,


1

(ω2τ2(i−1) + 4)
ϕ1

0.5s+ ωp

s

(
0.5s+ ωp

s
)∗ Φ

 > 0,(23d)

2ωt(i−1)ωt(i) − ω2
t(i−1)

∣∣∣N(jω)
s

∣∣∣ (s+ ωt(i))

1.25
(
∣∣∣N(jω)

s

∣∣∣ (s+ ωt(i)))
∗

1.25
Φ

> 0.(23e)

By finishing the reformulation of the problem, the
optimization problem has been changed in to a convex
optimization problem and can be solved by commercial
solvers, for instance yalmip plus Mosek[19][20] in Mat-
lab.

4. SIMULATION RESULT AND
ANALYSIS

4.1. Simulation plant
In this paper, the Bode plot of nominal plant

Pn(2nd order transfer function) and actual real plant
Pr(jω)(frequency response data) is shown in Fig. 2. The
nominal plant catches the dynamics of real plant in less
than 10Hz frequency range and doesn’t contain unstable
zeros.

Pn =
84.977

s(s+ 2.101)
, Q =

1

τ2s2 + 2kτs+ 1
, (24a)

L =
(s+ 2.101)

84.977(sτ2 + 2kτ)
Pr(jω), (24b)

S =
84.977(sτ2 + 2kτ)

84.977(sτ2 + 2kτ) + Pr(jω)(s+ 2.101)
,

(24c)

T =
Pr(jω)(s+ 2.101)

84.977(sτ2 + 2kτ) + Pr(jω)(s+ 2.101)
.

(24d)
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Fig. 2 Bode plot of real plant(frd) and nominal plant
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Fig. 3 Nyquist plot of before and after optimization
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Fig. 4 Bode plot of open loop function L, WpS and
WmT before optimization
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Fig. 5 Bode plot of open loop function L, WpS and
WmT after optimization

4.2. Case study result
In this section, by building the constraints following

the proposed method, the ωp can be maximized. The
simulation initial condition is given as τinit = 0.1 [s],
kinit = 0.9, ωp(init) = π [rad/s], ωt(init) = 80π [rad/s].

After using convex optimization, τopt = 0.0419 [s],
kopt = 1, ωp(opt) = 9.9 [rad/s]. In Fig. 3, dashed black
line represents for unit circle and dotted black line is a
circle whose center locates at (-0.5,0) and the radius is
0.5. Since the closest distance from Nyquist plot to crit-
ical point (−1, 0) is modulus margin (the inverse of the
maximum of the sensitivity function), Nyquist plot has no
intersection with dashed circle implies that the sensitiv-
ity function constraint holds successfully. And proposed
optimization method makes the Nyquist plot become tan-
gent to the dashed circle. The predefined peak value con-
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Fig. 6 Locally enlarged figure of Fig. 5

straints for S and T have been satisfied can also be told
more straightforwardly from Fig. 5 and Fig. 6 in which
|WpS| and |WmT | are always under 0 dB.

4.3. Disturbance rejection performance
Simulations also have been done to test the disturbance

rejection performance after using designed Q filter in Fig.
7. During this simulation, a well-identified transfer func-
tion (tf) of Pr(8th order) (as shown in Fig. 8) was used
and feedback controller Cfbwas chosen as follows.
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Fig. 7 Block diagram of disturbance observer control
system
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Fig. 8 Bode plot of Pr (8th order transfer function) and
Pr (frequency response data)

Cfb = 1.36 +
3.64

s
+

0.261s

0.0249s+ 1
. (25)

Making reference input as zero and injecting unit step dis-
turbance to the system, the output response are shown in
Fig. 9. The proposed Q filter design outperforms initial
Q filter and disturbance rejection performance has been
improved.
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Fig. 9 Output response when initial Q filter and opti-
mized Q filter are employed

5. CONCLUDING REMARKS
5.1. Conclusion

This paper has proposed a novel optimization method
for maximizing bandwidth of disturbance observer con-
figuration by just using frequency response data. What’s
more, all the nonlinear constraints are transformed into
convex form which can be solved by convex optimiza-
tion method. The simulation results verify the feasibility
of proposed method.

5.2. Analysis and Future work
In this paper, two parameters of Q filter has been

tuned. Although the real plant is a non-minimum phase
one, the nominal plant in this paper is a second order min-
imum phase one. In the future, proposed method will
be extended to the design of DOB system when non-
minimum phase nominal plant is involved.
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