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Improving Intersample Behavior in
Discrete-Time System Inversion: With
Application to LTI and LPTV Systems

Jurgen van Zundert , Wataru Ohnishi , Member, IEEE, Hiroshi Fujimoto, Senior Member, IEEE,
and Tom Oomen , Senior Member, IEEE

Abstract—Discrete-time system inversion for perfect
tracking goes at the expense of intersample behavior. The
aim of this article is the development of a discrete-time
inversion approach that improves continuous-time perfor-
mance by also addressing the intersample behavior. The
approach balances the on-sample and intersample behav-
ior and provides a whole range of new solutions, with sta-
ble inversion and multirate inversion as special cases. The
approach is successfully applied to a linear periodically
time-varying system in both simulations and experiments.
The approach improves the intersample behavior through
discrete-time system inversion and outperforms existing
approaches.

Index Terms—Discrete-time inversion, intersample be-
havior, linear periodically time varying (LPTV), linear time
invariant (LTI), multirate inversion, stable inversion.

I. INTRODUCTION

TRACKING control finds application in many areas, such
as atomic force microscopes [1], wafer stages [2], and

spectrometers [3]. The physical systems evolve in continuous
time and, hence, their performance is naturally defined in con-
tinuous time. Many approaches for tracking control, including
inverse model feedforward and iterative learning control, are
based on system inversion. For continuous-time systems, sys-
tem inversion approaches such as [4] can be used. However,
controllers are often implemented in a digital environment since
this provides a large flexibility at a low cost [5]. Due to the digital
implementation, discrete-time control is often used.
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One of the main challenges in system inversion
is nonminimum-phase behavior. Causal inversion of
nonminimum-phase systems yields unbounded inputs. To avoid
unbounded inputs, many discrete-time inversion approaches
have been proposed, see, e.g., [6], for a recent overview.
Approximate inversion approaches, such as zero-phase error
tracking control [7], zero-magnitude error tracking control, and
nonminimum-phase zero-ignore [8], are well known, but yield
limited performance since an approximation is used. Optimal
approaches, such as norm-optimal feedforward, H2-preview
control, andH∞-preview control [6, Sec. 4.3 and 4.4], yield high
performance in discrete time. Discrete-time stable inversion
[6, Sec. 4.2] yields exact tracking at the discrete-time samples.

Typically, discrete-time inversion approaches focus on the
on-sample performance, i.e., at the discrete-time samples, result-
ing in poor intersample behavior, i.e., in between the samples,
especially for zeros close to z = −1 [9]. This is observed for both
linear time-invariant (LTI) and linear periodically time-varying
(LPTV) systems [10]. As a consequence, the continuous-
time behavior is poor. Indeed, the best on-sample perfor-
mance does not necessarily leads to the best continuous-time
performance.

Multirate inversion [11], [12] provides an interesting alterna-
tive to improve intersample behavior by sacrificing on-sample
performance. However, the approach does not take into account
the system dynamics when balancing the intersample and on-
sample performance. As a consequence, the continuous-time
performance will in general be suboptimal.

Although there exist many discrete-time inversion ap-
proaches, the balance between on-sample performance and in-
tersample behavior is often not addressed. The main contribution
of this article is a discrete-time inversion approach that finds the
optimal balance between on-sample performance and intersam-
ple behavior for the purpose of continuous-time performance,
for both LTI and LPTV systems. LPTV systems are of interest
since they occur frequently, including sampled-data systems [5];
multirate systems [5], [13]; position-dependent systems with
periodic tasks [14]; and nonequidistant sampling [15]. For both
LTI and LPTV systems, the stable inversion and multirate in-
version approaches are recovered as special cases. Related work
includes [5], [16], and [17] where synthesis-based approaches
are presented. The approach presented in this article does not
require synthesis.
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Fig. 1. Tracking control diagram with continuous-time system Hc,
sampler S, and hold H. Given continuous-time reference trajectory r(t),
the objective is to minimize continuous-time error e(t) through design of
discrete-time controller F while control input u[k] remains bounded.

The outline of this article is as follows. In Section II, the
control diagram is presented and the control objective is formu-
lated. The main idea of the approach and preliminary results are
presented in Section III. The approach is presented in Section IV.
The advantages of the approach are demonstrated by application
to an LPTV motion system in simulations and experiments in
Section V. Section VI concludes this article.

Notation: For notational convenience, single-input, single-
output systems are considered. The results can directly
be generalized to square multivariable systems. Let s(i) �
di

dti s denote the ith time-derivative of s, B(·) a bi-
linear transformation, and Rb

>a = {x ∈ Rb|x[k] > a for all
k = 0, 1, . . . , b− 1}. Let Σ

z
= (A,B,C,D) be a discrete-

time state-space model and define the state transformation
T (Σ, T )

z
= (TAT−1, TB,CT−1, D).

II. PROBLEM FORMULATION

In this section, the control problem is formulated. The con-
sidered tracking control configuration is shown in Fig. 1, with
reference trajectory r(t) ∈ R, control input u(t) ∈ R, output
y(t) ∈ R, digital controller F , sampler S , and zero-order hold
H. The continuous-time, LTI system Hc is given by the minimal
realization

ẋ(t) = Acx(t) +Bcu(t) (1a)

y(t) = Ccx(t) (1b)

withx(t) ∈ Rn,n ∈ N and can be either an open-loop or closed-
loop system. It is assumed that Hc is stable.

In conventional discrete-time control, the focus is on on-
sample performance. The discrete-time system H = SHcH
with Hc in (1) and sampling time δ is given by

x[k + 1] = Ax[k] +Bu[k] (2a)

y[k] = Cx[k] (2b)

with

A = eAcδ, B =

∫ δ

0
eAcτBc dτ, C = Cc. (2c)

In this setting, perfect on-sample tracking, i.e., e[k] = 0, for all
k, is achieved for F = H−1. However, this does not provide any
guarantees for the intersample performance e(t), t �= kδ. Hence,
the continuous-time performance in terms of e(t), for all t, may
be poor as observed in, e.g., [10].

The control objective considered in this article is to mini-
mize the continuous-time error e(t). Note that this includes

Fig. 2. Block diagram of the approach. The discrete-time system H is
decomposed into H1 and H2. System H1 is inverted such that there
is exact state tracking of the desired state x̂1[k] every n1 samples
for the purpose of intersample behavior. System H2 is inverted such
that there is exact output tracking every sample for the purpose of
on-sample behavior.

both on-sample (t = kδ) and intersample (t �= kδ) performance.
Importantly, u[k] should remain bounded, even in the presence
of nonminimum-phase behavior. Trajectory r(t) is assumed to
be known a priori.

In the next section, the main idea of the approach and prelim-
inary results are presented.

III. CONCEPTUAL IDEA AND PRELIMINARY RESULTS

In this section, the conceptual idea of the approach and
preliminary results are presented. The results form the basis for
the complete approach presented in Section IV.

A. Conceptual Idea

In the proposed approach, the system is decomposed into two
parts and both parts are inverted separately according to Fig. 2,
whereH is decomposed asH = H1H2. The inversion of system
H1 aims at the intersample behavior. More specific, let n1 be the
state dimension of H1, then H1 is inverted such that there is
exact state tracking of a desired state x̂1[k] every n1 samples.
The inversion of H2 aims at the on-sample behavior through
perfect output tracking for every sample.

Exact state tracking is experienced to yield good intersam-
ple behavior in multirate inversion [11], whereas exact output
tracking yields good on-sample behavior in stable inversion [6].
Hence, the choice of the decomposition into H1 and H2 can
be used to balance the on-sample behavior and the intersample
behavior to the benefit of the continuous-time performance.
The idea is conceptually illustrated in Fig. 3. An important
observation is that a small on-sample error does not necessar-
ily yield a small continuous-time error. The figure shows that
the approach provides a whole range of solutions that were
nonexisting before. The stable inversion and multirate inver-
sion solution are recovered as the two extreme cases, see also
Section IV-C.

The approach requires the decomposition H = H1H2 in
terms of state-space realizations and the desired state x̂1[k]
for H1, see also Fig. 2. In Section III-B, the desired state for
the continuous-time system Hc is presented. In Section III-C,
the state-space decomposition H = H1H2 is presented. The
results form the basis for the complete approach presented in
Section IV.

Authorized licensed use limited to: University of Tokyo. Downloaded on February 16,2020 at 14:07:26 UTC from IEEE Xplore.  Restrictions apply. 



VAN ZUNDERT et al.: IMPROVING INTERSAMPLE BEHAVIOR IN DISCRETE-TIME SYSTEM INVERSION 57

Fig. 3. Qualitative plot of the continuous-time error versus the on-
sample error. The approach balances the intersample behavior and the
on-sample behavior for the purpose of continuous-time performance. It
provides a whole range of solutions ( ) that were nonexisting before.
Importantly, the smallest on-sample error does not necessarily yield the
smallest continuous-time error. The relative performance depends on
the particular settings, e.g., the system dynamics, and may vary. Stable
inversion ( ) and multirate inversion ( ) are recovered as special cases.

B. Desired State for Continuous-Time System

In this section, the desired state for the continuous-time sys-
tem is presented. Given a continuous-time reference trajectory
r(t) together with its n− 1 time derivatives and system Hc

in (1), the objective is to determine a bounded state x̂(t) such
that y(t) = Ccx̂(t) yields y(i)(t) = r(i)(t), i = 0, 1, . . . , n− 1,
where (·)(i) denotes the ith time derivative of (·), i.e., such that
r̄(t) = ȳ(t) where

r̄(t) =

⎡
⎢⎢⎢⎢⎣

r(0)(t)

r(1)(t)
...

r(n−1)(t)

⎤
⎥⎥⎥⎥⎦ , ȳ(t) =

⎡
⎢⎢⎢⎢⎣

y(0)(t)

y(1)(t)
...

y(n−1)(t)

⎤
⎥⎥⎥⎥⎦ . (3)

A similar approach as in [11] is used based on the controllable
canonical form given by Lemma 1, see also [18, Sec. 17.6]. The
desired state is given by Theorem 2. The results are recapitulated
for completeness and reading convenience.

Lemma 1. (Controllable canonical form): Let the transfer
function of Hc in (1) be given by

Hc = Cc(sI −Ac)
−1Bc =

B(s)

A(s)
(4a)

with

A(s) =
sn + an−1s

n−1 + · · ·+ a0

b0
(4b)

B(s) =
bmsm + bm−1s

m−1 + · · ·+ b0

b0
(4c)

b0 �= 0, then the controllable canonical form
Hccf = T (Hc, Tccf ) is given by

ẋccf (t) = Accfxccf (t) +Bccfu(t) (5a)

y(t) = Cccfxccf (t) (5b)

where

[
Accf Bccf

Cccf

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

−a0 −a1 −a2 · · · −an−1 b0

1 b1
b0

b2
b0

· · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5c)

and

T−1
ccf =

[
Bc AcBc · · · An−1

c Bc

]
⎡
⎢⎢⎢⎢⎣

a1
b0

a2
b0

· · · 1
b0

a2
b0

a3
b0

··· 0
... ··· ···

...
1
b0

0 · · · 0

⎤
⎥⎥⎥⎥⎦ . (6)

Theorem 2. (Desired continuous-time state): Let B−1(s) in
(4) be decomposed as

B−1(s) = Fs(s) + Fu(s) (7)

with all poles ps ∈ C ofFs(s) such that�(ps) < 0 and all poles
pu ∈ C of Fu(s) such that �(pu) > 0. Let

fs(t) = L−1(Fs(s)), fu(t) = L−1(Fu(−s)) (8a)

x̂ccf,s(t) =

∫ t

−∞
fs(t− τ)r̄(τ) dτ (8b)

x̂ccf,u(t) =

∫ ∞

t

fu(t− τ)r̄(τ) dτ (8c)

where L−1(·) is the inverse unilateral Laplace transform
[19, Sec. 9.3]. Let Hc in (4) have realization (5), then
y(t) = Ccx̂(t) where

x̂(t) = T−1
ccf (x̂ccf,s(t) + x̂ccf,u(t)) (9)

is bounded and such that ȳ(t) = r̄(t), with ȳ(t) and r̄(t) in (3).
Proof: See [11, Sec. IV-B]. �
Theorem 2 provides the desired bounded state for optimal

state tracking. Together with the state-space decomposition pre-
sented in the next section, Theorem 2 forms the basis of the
approach presented in Section IV.

Remark 1: If poles of B−1(s) in Theorem 2 have �(p) = 0,
i.e., B−1(s) is nonhyperbolic, similar techniques as in [20] can
be used.

C. State-Space Decomposition

In this section, the multiplicative state-space decomposition
is presented. A multiplicative decomposition, in contrast to an
additive decomposition, enables exact on-sample tracking every
few samples. Together with Theorem 2, the decomposition forms
the basis of the approach in Section IV.

Given the state-space system H in (2), the interest is in
minimal realizations H1, H2 such that H = H1H2 in terms of
state-space realization, where the zeros and poles of H can
be arbitrarily assigned to H1 or H2. The starting point is the
multiplicative decomposition H = H1H2 in terms of transfer
functions as given by Lemma 3.
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Lemma 3. (Transfer function decomposition): Let H
z
= (A,

B,C,D) be a state-space realization with n states and invertible
D. Let V ∈ Rn×n1 be a column space of an invariant subspace
of A and let V× ∈ Rn×n2 be a column space of an invariant

subspace of A× = A−BD−1C, such that S =
[
V V×

]
has

full rank n = n1 + n2. Let

Π = S

[
In1 0n1×n2

0n2×n1 0n2×n2

]
S−1. (10)

Then, the realizations

H1f
z
=

[
A ΠBD−1

C I

]
, H2f

z
=

[
A B

C(I −Π) D

]
(11)

are such that H = H1fH2f in terms of transfer func-
tions, i.e., C(zI −A)−1B +D = (C(zI −A)−1ΠBD−1 +
I)(C(I −Π)(zI −A)−1B +D).

Proof: Follows directly from extending [21, Corrollary 11]
to D �= I . �

If the D matrix in Lemma 3 is singular, a bilinear transforma-
tion [5, Sec. 3.4], [19, Sec. 10.8.3] can possibly be employed
to obtain an equivalent system with nonsingular D matrix.
A multiplicative decomposition for the transformed system is
obtained through Lemma 3. Applying the inverse transformation
on the decomposed system yields the decomposition for the
original system since B(H1H2) = B(H1)B(H2).

Importantly, Lemma 3 guarantees equivalence in terms of
transfer functions, but not in terms of state-space realizations.
Indeed, the decomposition of Lemma 3 yields nonminimal
realizations of H1f , H2f as both have state dimension n. By
exploiting the modal form and using a suitable state transforma-
tion, the desired state-space decomposition for the approach is
obtained as given by Theorem 4.

Theorem 4. (State-space decomposition): LetTmod ∈ Cn×n

be such that Hmod = T (H,Tmod) = (A,B,C,D) is in modal
form [22, Sec. 7.4] with nonsingular D. Let H1fH2f = Hmod

be the decomposition given by Lemma 3. Let Tper ∈ Rn×n be
such that

T (H1f , Tper)
z
=

⎡
⎣A1 0 B1

0 A2 0
C1 C1r I

⎤
⎦ (12)

T (H2f , Tper)
z
=

⎡
⎣A1 0 B2r

0 A2 B2

0 C2 D

⎤
⎦ (13)

with A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 , n1 + n2 = n, and define

H1
z
=

[
A1 B1

C1 I

]
, H2

z
=

[
A2 B2

C2 D

]
. (14)

Furthermore, let X ∈ Rn1×n2 satisfy

A1X −XA2 = B1C2. (15)

Then, the state-space realization of T (H1H2, T
−1
perT12) with

T12 =

[
In1 X

0n1×n2 In2

]
(16)

is identical to that of Hmod.

Proof: See Appendix A. �
Theorem 4 yields a state-space decomposition H = H1H2

with identical state-space realizations. Note that such a decom-
position always exists. Together with Theorem 2, Theorem 4
forms the basis for the approach presented in the next section.

Remark 2: Note that V in Lemma 3 is related to the poles of
H , whereas V× is related to the zeros of H . Hence, V, V× can
be used to assign the poles and zeros to either H1 or H2.

Remark 3: The column spaces of the invariant subspaces in
Lemma 3 can be constructed from eigenvectors. Note that for
complex eigenvectors, the real and imaginary parts should be
used. For eigenvalues with multiplicity larger than one, gener-
alized eigenvectors obtained from the Jordan form can be used
to ensure S has full rank.

Remark 4: Sylvester (15) has a unique solution X if the
eigenvalues of A1 and −A2 are distinct [23].

IV. INVERSION FOR INTERSAMPLE PERFORMANCE

In the previous section, the global idea and preliminary re-
sults on the desired state and the state-space decomposition are
presented. Based on these results, the approach is presented.
First, the approach for LTI systems is presented. Second, the
approach for LPTV systems is presented. Finally, special cases
are recovered.

A. Approach for LTI Systems

The approach consists of two steps. First, stable inversion is
applied to H2 in (14) to obtain u[k] such that y2[k] = u1[k], for
all k, see also Fig. 2. The solution is given by Theorem 5 and
provides exact output tracking every sample. See [6, Sec. 4.2]
for a proof.

Theorem 5. (Inversion of H2): Consider Fig. 2 and let H−1
2

be given by
[
xs[k + 1]

xu[k + 1]

]
=

[
As 0

0 Au

][
xs[k]

xu[k]

]
+

[
Bs

Bu

]
u1[k] (17a)

u[k] =
[
Cs Cu

] [xs[k]

xu[k]

]
+Du1[k] (17b)

with |λ(As)| < 1 and |λ(Au)| > 1. Then, y2[k] = u1[k], for all
k, if

u[k] = Csxs[k] + Cuxu[k] +Du1[k] (18)

which is bounded for bounded u1 and where xs follows from
solving

xs[k + 1] = Asxs[k] +Bsu1[k], xs[−∞] = 0 (19)

forward in time and xu follows from solving

xu[k + 1] = Auxu[k] +Buu1[k], xu[∞] = 0 (20)

backward in time.
If u1[k] is bounded, u[k] in Theorem 5 is bounded by con-

struction of xs[k], xu[k], even if H2 is nonminimum phase. The
stable inversion solution in Theorem 5 achieves exact output
tracking every sample and has infinite preactuation. Regular
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causal inversion is recovered as special case if the system is
minimum phase (xu is nonexisting), see also [6].

Second, multirate inversion is applied to H1 in (14) to obtain
u1[k]. Note that by Theorem 5, y2[k] = u1[k], for all k. The
solution is based on lifting the state equation over n1 samples.
The solution is adopted from [11] and given by Theorem 6. The
solution provides exact state tracking every n1 samples.

Theorem 6. (Inversion of H1): Consider Fig. 2 with
y2[k] = u1[k], for all k, and let x̂1[k] be the desired state
for system H1 in (14). Consider the state equation lifted over τ
samples given by

x1[q + 1] = A1 x1[q] +B1 u1[q] (21)

with A1 = An1
1 , B1 = [An1−1

1 B1 An1−2
1 B1 . . . B1], u1[q] =

[u1[kn1] u1[kn1 + 1] . . . u1[(k + 1)n1 − 1]]�, and x1[q] =
x1[kn1]. Then, x1[q] = x̂1[q], for all q, where x̂1[q] is x̂1[k] lifted
over τ samples, if

u1[q] = B−1
1 (x̂1[q + 1]−A1 x̂1[q]) (22)

which is bounded for bounded x̂1.
Proof: See [11, Sec. IV-C]. �
Importantly, the inversion approach in Theorem 6 is based

on the continuous-time system Hc, rather than the discrete-time
system H . The approach yields exact state tracking, and, hence,
exact output tracking, every n1 samples and has n1 samples
preactuation. Note that u1 is bounded if x̂1 is bounded, even
if H1 is nonminimum phase. More details can be found in, for
example, [11] and [12]. The desired state x̂1 in Theorem 6 is
obtained by Procedure 7, which follows from Sections III-B and
III-C. An example of the application of Procedure 7 to a motion
system is provided in Appendix B.

Procedure 7. (Desired state of H1): Given Hc in (5), H in
(2), and the decomposition H = H1H2 in Theorem 4, the fol-
lowing steps yield the desired state x̂1[k] in Theorem 6.

1) Obtain the controllable canonical form Hccf = T (Hc,
Tccf ) according to Lemma 1.

2) Obtain the desired state x̂(t) of Hc using Theorem 2.
3) Set the desired state of H to x̂[k] = x̂(kδ).
4) Obtain the desired state of Hmod: x̂mod[k] = Tmodx̂[k],

with Hmod, Tmod in Theorem 4.
5) Given H1, H2 in (14), let

H12 = H1H2
z
=

⎡
⎣A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2

⎤
⎦ . (23)

6) Obtain the desired state of H12: x̂12[k] = T−1
12 Tper

x̂mod[k], with T12 in (16) and Tper satisfying (12)
and (13).

7) Obtain the desired state for H1:
x̂1[k] = [In1 0n1×n2 ]x̂12[k].

The combination of the inversion of H2 in Theorem 5 and the
inversion ofH1 in Theorem 6 constitutes the control inputu[k] in
Fig. 2, which is bounded by design, also for nonminimum-phase
systems. The design freedom is in the decomposition of H into
H1 and H2 in Theorem 4. Equation (23) shows that the output is
given by y[k] = C1x1[k] +D1C2x2[k] since either D1 = 0 or
D2 = 0 as D = 0 in (2). If D1 = 0, y[k] = C1x1[k] and since

inversion of H1 in Theorem 5 ensures perfect state tracking of
x1[k] every n1 samples, there is perfect output tracking every
n1 samples. If D1 �= 0, y[k] also depends on x2[k] of H2 and
since inversion of H2 in Theorem 6 does not provide perfect
state tracking, there is no perfect output tracking for y[k] every
n1 samples. Hence, to guarantee exact on-sample tracking every
n1 samples, V, V× in Theorem 4 are preferably chosen such that
D1 = 0.

In this section, the approach for LTI systems is presented. In
the next section, the approach for LPTV systems is presented.

Remark 5: For strictly proper systems H2, Theorem 5 can be
applied to the biproper system H̄2 obtained through time shifts
H̄2 = zd2H2, where d2 is the relative degree of H2, see also
[6, Remark 1]. If there are eigenvalues on the unit circle, i.e.,
there exist λi such that |λi(A)| = 1, then similar techniques as
in [20] can be followed.

Remark 6: The decomposition of H−1 given by (17) can be
obtained through an eigenvalue decomposition.

Remark 7: Note that B1 in Theorem 6 is the controllability
matrix of H1, and hence, B−1

1 exists if H1 is controllable.

B. Approach for LPTV Systems

In this section, the approach for LPTV systems is presented.
Let the LPTV system H with period τ ∈ N be given by

x[k + 1] = A[k]x[k] +B[k]u[k] (24a)

y[k] = C[k]x[k] (24b)

withA[k + τ ] = A[k],B[k + τ ] = B[k], andC[k + τ ] = C[k],
for all k. LPTV systems may result from nonequidistant sam-
pling as in Example 1.

Example 1. (Nonequidistant sampling): Let the sampling in
Fig. 1 be nonequidistant in time and given by the sampling
sequence Δne ∈ R∞

>0 with periodicity τ ∈ N defined as

Δne = (δ1, δ2, . . . , δτ , δ1, δ2 . . .) (25)

with δi = γiδb, δb ∈ R>0, γi ∈ N, i = 1, 2, . . . , τ . Then, the
discretized system H = SHcH is given by (24) with

A[i] = eAcδi , B[i] =

∫ δi

0
eAcτBc dτ, C = Cc (26a)

i = 1, 2, . . . , τ , where A[k + τ ] = A[k] and B[k + τ ] = B[k],
for all k. By linearity of Hc and periodicity of Δne, H is LPTV
with period τ .

The approach for LPTV systems is similar to that for LTI
systems, with the key difference that an additional lifting step is
used. The lifting step turns the LPTV system into a (multivari-
able) LTI system as given by Lemma 8.

Lemma 8: Lifting the input of H in (24) over τ samples
yields the LTI system H given by

x[q + 1] = Ax[q] +B u[q] (27a)

y[q] = C x[q] +Du[q] (27b)

Authorized licensed use limited to: University of Tokyo. Downloaded on February 16,2020 at 14:07:26 UTC from IEEE Xplore.  Restrictions apply. 



60 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 25, NO. 1, FEBRUARY 2020

where

x[q] = x[kτ ], u[q] =

⎡
⎢⎢⎢⎣

u[kτ ]
u[kτ + 1]

...
u[(k + 1)τ − 1]

⎤
⎥⎥⎥⎦ (27c)

[
A B
C D

]

=

⎡
⎢⎢⎢⎢⎢⎣

Φτ+1,1 Φτ+1,2B[1] Φτ+1,3B[2] . . . B[τ ]
C[1] 0 0 · · · 0

C[2]Φ2,1 C[2]B[1] 0 · · · 0
...

...
...

. . .
...

C[τ ]Φτ,1 C[τ ]Φτ,2B[1] C[τ ]Φτ,3B[2] · · · 0

⎤
⎥⎥⎥⎥⎥⎦
(27d)

with transition matrix

Φk2,k1 =

{
I, k2 = k1

A[k2 − 1]A[k2 − 2] . . . A[k1], k2 > k1.
(28)

For the lifted system H in (27), the same approach as for
the LTI system illustrated in Fig. 2 is used. The state-space
decomposition H = H1H2 is obtained using Theorem 4. Sys-
tem H2 is inverted using Theorem 5 and H1 is inverted using
Theorem 6, where the desired state x̂1[q] follows along the same
lines as in Procedure 7. The result is the lifted input signal
u[q], which, after inverse lifting, yields input u[k], for the LPTV
system H in (24).

In the previous and present section, the approaches for LTI
and LPTV are presented, respectively. Next, special cases are
recovered.

C. Special Cases

The approach provides a whole range of solutions as illus-
trated in Fig. 3. The stable inversion and multirate inversion
solution are recovered as the two extreme cases and given by
Corollaries 9 and 10. The results hold for both LTI and LPTV
systems.

Corollary 9. (Special case: Stable inversion [6], [24]): The
stable inversion solution for H is recovered from the approach
in Section IV as special case if H = H2, i.e., H1 = I and
n1 = 0.

Corollary 10. (Special case: Multirate inversion [11], [12]):
The multirate inversion solution for H is recovered from the
approach in Section IV as special case if H = H1, i.e., H2 = I
and n1 = n.

Importantly, although Theorem 5 yields exact output tracking
of H2 for every sample, the inversion of H1 does not reduce to
conventional multirate inversion of H1 since the desired state
x̂1[k] depends on the full system Hc and not only on H1.

Finally, the approach for LTI systems is recovered from that
for LPTV systems as given by Corollary 11. Indeed, for τ = 1,
(2) is recovered from (24).

Corollary 11: The approach is applicable to both LTI and
LPTV systems. Indeed, the approach for LTI systems in

Fig. 4. Motion system [25] used in simulations and for experimental
validation. (a) Experimental high-precision positioning stage with force
input u and output displacement y. (b) Bode diagram of a frequency
response function measurement ( ) of the motion system in Fig. 4(a)
and the identified continuous-time model Hc ( ).

Section IV-A is recovered as a special case from the approach
for LPTV systems in Section IV-B for τ = 1.

The approach provides a whole range of solutions that were
nonexisting before, see also Fig. 3. The advantages of the
approach are demonstrated by application to an LPTV motion
system in Section V.

V. EXPERIMENTAL RESULTS

In this section, the approach outlined in Section IV is validated
experimentally on a motion system. The experiments show the
applicability of the approach in a practical setting. First, the
motion system is presented. Second, the approach is validated
in simulations revealing the desired properties and providing the
optimal decomposition for use in the experiments. Finally, the
approach is validated in experiments. Both in simulations and
in experiments, the approach is superior to the special cases of
stable inversion and multirate inversion.

A. Motion System

The approach is validated on the experimental high-precision
positioning stage shown in Fig. 4(a). The Bode diagram of
a frequency response function measurement of the system is
shown in Fig. 4(b). The measurement is obtained through a
dedicated identification experiment with a multisine input in the
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Fig. 5. Reference trajectory r(t) consisting of eighth-order
polynomials in time.

range between 1–1000 Hz and a sampling frequency of 12.5 kHz.
The identified eighth-order continuous-time system Hc (n = 8
and m = 4) is given by

Hc =
3.7232 · 106(s2 + 7.181s+ 2.507 · 104)

s(s+ 2.33)(s2 + 9.132s+ 3.672 · 104)

× (s2 + 102.6s+ 8.531 · 105)

(s2 + 37.91s+ 3.12 · 105)(s2 + 254.5s+ 3.478 · 106)
(29)

and is stable and minimum phase. The Bode diagram of the
model Hc is also shown in Fig. 4(b). The continuous-time
reference trajectory r(t) is shown in Fig. 5.

A nonequidistant sampling sequence with γ1 = 1, γ2 = 2,
and δb = 400 μs (fb = 2.5 kHz) is used, see also Example 1,
resulting in an LPTV system H with period τ = 2. The cor-
responding lifted LTI system H in (27) has one nonminimum-
phase (transmission) zero due to discretization.

B. Simulation: Finding the Optimal Decomposition

In this section, the approach in Section IV is evaluated in
simulation to confirm its properties and to find the optimal
decomposition for use in the experiments. In Section V-C, the
approach is validated in experiments.

First, three different solutions are considered: the approach in
Section IV with n1 = 4, the special case n1 = 0, i.e., multirate
inversion in Corollary 10, and the special casen1 = 8, i.e., stable
inversion in Corollary 9. The input signals are shown in Fig. 6.
Note that the input signal of stable inversion is nonsmooth. The
error signals are shown in Fig. 7, which, for the purpose of
intersample performance evaluation, are evaluated at a sampling
frequency of 250 kHz, i.e., a factor 100 higher than fb.

The special case of stable inversion in Fig. 7(a) achieves
perfect output tracking, however, the intersample performance
is poor as a result of the nonsmooth input signal, see Fig. 6. The
special case of multirate inversion in Fig. 7(b) yields perfect state
tracking every n = 8 samples, with reasonable intersample per-
formance. The approach in Fig. 7(c) achieves perfect state track-
ing every n1 = 4 samples and good intersample performance.
The proposed approach outperforms the special cases of stable
inversion and multirate inversion in terms of the continuous-time
error e(t).

Fig. 6. Generated input signals u[k]. The input signal for stable in-
version is nonsmooth, whereas the input signals of multirate inversion
and the proposed approach are smooth. (a) Stable inversion approach.
(b) Multirate inversion approach. (c) Proposed approach.

Second, the performance is evaluated for a variety of solu-
tions. The results are shown in Fig. 8 and quantify Fig. 3. The
results show that many of the solutions provided by the approach
outperform the special cases of stable inversion and multirate
inversion. Note that Fig. 8 only shows results for even numbers
n1 due to the additional lifting step with τ = 2 that is presently
used. The solution shown in Figs. 6(c) and 7(c) is the solution
that yields the best performance as indicated by in Fig. 8 and
is also used in the experiments in Section V-C. For comparison,
the discrete-time norm-optimal solution [6, 4.3] is also shown
in Fig. 8. Note that since the boundary effects are negligible, the
performance is almost identical to that of the stable inversion
approach [6, Sec. 4.2 and 4.3] and, hence, also inferior to that
of the proposed approach.

In summary, the simulations show that the intersample per-
formance of the special case of stable inversion is poor and
that the performance of the special case of multirate inversion
is moderate. Most importantly, the proposed approach offers
a variety of options that outperform the two special cases and
achieves superior performance. In the next section, the solution
that yields the best performance in simulations is validated in
experiments.
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Fig. 7. Error signals over time. The intersample error signal e(t) ( )
and on-sample error signal e[k] ( ) near t = 0.30 s show that the pro-
posed approach outperforms the other approaches. (a) Stable inversion
approach achieves exact output tracking every sample ( ). (b) Multirate
inversion approach achieves exact state and output tracking every n = 8
samples ( ). (c) Proposed approach achieves output tracking every
n1 = 4 samples ( ).

Fig. 8. Quantification of Fig. 3 through simulation. The number of
states n1 in H1 corresponds to the number of samples between exact
on-sample tracking. The approach offers a variety of solutions ( ). The
best choice for the approach (n1 = 4, ), which is also shown in Figs. 6
and 7, outperforms the stable inversion approach (n1 = 0, ) and the
multirate inversion approach (n1 = 8, ). For comparison, the discrete-
time norm-optimal solution ( ) is also shown and is almost identical
to that of the stable inversion solution ( ).

C. Experimental Validation

In this section, the three solutions shown in Fig. 6 are validated
in experiments by application to the motion system shown in
Fig. 4.

For the purpose of intersample performance evaluation and
due to hardware limitations, the error signal is measured with a

Fig. 9. Experimental results showing the error signal e(t) in the time
and frequency domain for stable inversion ( ), multirate inversion
( ), the discrete-time norm-optimal solution ( ), and the proposed
approach ( ). The proposed approach outperforms the special cases
of stable inversion and multirate inversion as well as the norm-optimal
solution. (a) Time-domain response. (b) Cumulative power spectrum.

sampling frequency of 12.5 kHz, i.e., five times larger than fb.
Besides the feedforward controllers running at the nonequidis-
tant rate, a feedback controller running at an equidistant rate
with frequency fb is used for stabilization. The PID controller
with notch filter yields a bandwidth of 10 Hz and a modulus
margin of 6 dB. Due to the low bandwidth of the controller, the
feedback controller has limited effect on the performance.

The experimental results are shown in Fig. 9. The results show
that the proposed approach outperforms the special cases of sta-
ble inversion and multirate inversion in terms of the continuous-
time error e(t). Note that due to experimental conditions, e.g.,
model mismatches, there is no exact on-sample tracking every
few samples as is the case for the simulations in Section V-B.

In summary, the experiments show the practical applicability
of the proposed approach. In particular, the proposed approach
outperforms the special cases of stable inversion, multirate in-
version as well as norm-optimal control.

VI. CONCLUSION

A discrete-time inversion approach is developed that allows to
balance the on-sample and intersample behavior for the purpose
of continuous-time performance. The approach is applicable to
both LTI and LPTV systems. The multirate inversion and stable
inversion approaches are recovered as special cases. Application
to an LPTV motion system in both simulations and experiments
demonstrates the advantages of the approach.

For LPTV systems, the approach currently involves an addi-
tional lifting step, which limits applicability due to constraints
on the input and state dimensions, i.e., the state dimension

Authorized licensed use limited to: University of Tokyo. Downloaded on February 16,2020 at 14:07:26 UTC from IEEE Xplore.  Restrictions apply. 



VAN ZUNDERT et al.: IMPROVING INTERSAMPLE BEHAVIOR IN DISCRETE-TIME SYSTEM INVERSION 63

should be an integer multiple of the input dimension. In contrast,
stable inversion and multirate inversion can be directly applied
to LPTV systems. Future work focuses on an explicit state-space
decomposition for LPTV systems to avoid the additional lifting
step and thereby potentially increase the performance of the
approach.

Obviously, the interest is also in determining the optimal de-
composition intoH1 andH2 a priori in order to avoid exhaustive
simulations. Preliminary results show that the best performance
is obtained when capturing sampling zeros, introduced by zero-
order-hold discretization, in H1, and damped (anti) resonances
in H2. Ongoing research focuses on more detailed guidelines in
finding the optimal decomposition.

APPENDIX A
PROOF OF THEOREM 4

Due to the modal form ofHmod, theAmatrix ofHmod is block
diagonal and the states are decoupled per mode. The matrix Tper

is a permutation matrix and follows directly from V, V× and
the state ordering of Hmod. The last n2 states in (12) are
uncontrollable and are redundant since the states are decoupled.
Similarly, the first n1 states in (13) are unobservable and are
redundant since the states are decoupled. Hence, H1 and H2

are minimal realizations such that Hmod = H1H2 in terms of
transfer functions. The product H1H2 with H1 andH2 in (14) is
given by

H1H2 =

⎡
⎣A1 B1C2 B1D

0 A2 B2

C1 C2 D

⎤
⎦ . (30)

Using (15)

T (H1H2, T12)

=

⎡
⎣A1 −A1X +B1C2 +XA2 B1D +XB2

0 A2 B2

C1 −C1X + C2 D

⎤
⎦ (31a)

=

⎡
⎣A1 0 B2r

0 A2 B2

C1 C1r D

⎤
⎦ . (31b)

By definition of Tper in (12) and (13), T (H1H2, T
−1
perT12) =

T (T (H1H2, T12), T
−1
per) = (A,B,C,D) = Hmod, which con-

cludes the proof.

APPENDIX B
EXAMPLE OF PROCEDURE 7

This appendix demonstrates the steps in Procedure 7 for a
simple motion system.

Consider a mass-damper-spring system of which the dynam-
ics are given by

mq̈(t) + dq̇(t) + kq(t) = u(t) (32)

with q(t) the displacement, q̇(t) the velocity, q̈(t) the acceler-
ation, and the parameters mass m = 2 kg, damping constant
d = 6 N·s/m, and spring constant k = 4 N/m. The reference
trajectory is given by r(t) = sin(t) and the sample time is

δ = 1 ms. For state x(t) =
[
q̇(t)
q(t)

]
, i.e., n = 2, the state-space

realization in (1) is given by

Ac =

[
− d

m − k
m

1 0

]
, Bc =

[
1

0

]
, Cc =

[
0 1

]
. (33)

Next, the steps in Procedure 7 are followed.
1) By Lemma 1 follows

Hc = Cc(sI −Ac)
−1Bc =

B(s)

A(s)
(34a)

with

B(s) =
1
m
1
m

= 1 (34b)

A(s) =
s2 + d

ms+ k
m

1
m

(34c)

i.e., b0 = 1
m , a0 = k

m , and a1 = d
m . Hence, the control-

lable canonical form in (5) is given by

Hccf = T (Hc, Tccf )
s
=

⎡
⎣ 0 1 0
− d

m − k
m

1
m

1 0

⎤
⎦ (34d)

with T−1
ccf =

[ 0 1
1 0

]
.

2) Since B(s) = 1, it follows from Theorem 2 that
x̂ccf,s(t) =

[
sin(t)
cos(t)

]
and x̂ccf,u(t) =

[ 0
0

]
, hence the de-

sired state in (9) is given by

x̂(t) =

[
cos(t)

sin(t)

]
. (35)

Indeed, y(t) = Ccx̂(t) = sin(t) = r(t) and
ẏ(t) = cos(t) = ṙ(t).

3) The desired state of H is x̂[k] = x̂(kδ).
4) The modal form in Theorem 4 is obtained by Hmod =

T (H,Tmod), with

Tmod =

[
−2.8284 −2.8284

−2.2361 −4.4721

]
. (36)

The desired state of Hmod is obtained by x̂mod[k] =
Tmodx̂[k].

5) The state-space decomposition in Theorem 4 requires a
nonsingular D, hence a bilinear transformation is used,
in particular

H̃mod = B(Hmod) (37a)

s
=

⎡
⎣ 0.001 0 −0.001

0 −0.0005 −0.00079
0.2502 −0.3164 −6.25 × 10−11

⎤
⎦ .

(37b)

The transfer function decomposition of H̃mod is obtained
through Lemma 3 by selecting the column spaces of the
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invariant subspaces as Ṽ =
[ 1

0

]
and Ṽ× =

[−0.7845
−0.6202

]
, such

that Π̃ =
[ 1 −1.2649

0 0

]
, see also (10), which yields

H̃1f
s
=

⎡
⎣ 0.001 0 −4

0 −0.0005 0
0.2502 −0.3164 1

⎤
⎦ (38)

H̃2f
s
=

⎡
⎣ 0.001 0 −0.001

0 −0.0005 −0.00079
0 0.00016 −6.25 × 10−11

⎤
⎦ . (39)

By selecting Tper =
[ 1 0

0 1

]
, (12) and (13) are satisfied

and the minimal state-space realizations H̃1 and H̃2 are
obtained. Undoing the bilinear transformation yields

H1 = B−1(H̃1)
z
=

[
0.998 −5.651

0.3536 0

]
(40)

H2 = B−1(H̃2)
z
=

[
0.999 −0.001117

0.0002235 −1.25 × 10−7

]
. (41)

System H12 follows from (23).
6) The desired state of H12 is given by x̂12[k] =

T12Tperx̂mod[k], with T12 in (16) given by

T12 =

[
1 1.2649

0 1

]
(42)

with X = 1.2649 the solution to the Sylvester equation
(15).

7) The desired state for H1 is given by x̂1[k] = [1 0]x̂12[k].
This concludes the application of Procedure 7 to the system

in (32).
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