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Abstract - An approach for unsupervised human activity 

discovery has been proposed in this paper.  The approach 

automatically discover unknown activities from unlabeled 

data and has the ability to reject random activities.  This 

ability will enable intelligent systems to discover and learn 

new activities autonomously.  K-means is used to cluster a 

pool of unlabeled activity observations into groups of 

different activities.  The system requires no prior 

knowledge of how many activities to be discovered.  It uses 

cluster validity indices to automatically estimate the 

required number of clusters and further evaluate cluster 

homogeneity to accept clusters with homogenous activity 

and reject clusters with random activities.  Experimental 

results showed the potential of the approach and identified 

suitable validity indices to achieve unsupervised human 

activity discovery. 
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1 Introduction 

From the detailed survey on human activity analysis by 

Aggarwal and Ryoo [4], we can see that there have been 

significant efforts to accurately capture human motion, i.e., 

solving computer vision problem and recognize the activity 

from the motion, i.e., solving modeling and learning 

problems.  Systems with high accuracy in capturing human 

motion are expensive and require infrastructure setup.  

Many such systems require markers attached to the subjects.  

Further, those systems use supervised learning algorithms to 

learn models of activities.  In these systems, pre-labeled 

examples are provided to the learning algorithm.  However, 

to enable intelligent systems to autonomously learn new 

activities, they will be required to deal with unlabeled data.  

For this reason, there have been increasing interest to 

investigate human activity discovery using unsupervised 

learning.  In the knowledge of the authors, most of the 

works relating unsupervised learning with activity 

recognition have been either focusing on solving computer 

vision problems or they require alternative form of pre-

labeled data from wearable sensors or other sources.  For 

examples, Song et al. [17] developed an EM-like algorithm 

on decomposable triangulated graphs to extract human as 

foreground from background clutter.  Huynh et al. [12] used 

clustering to generate a vocabulary of labels from sensor 

data, which are then used for pattern extraction using topic 

models to recognize daily routines.  They used data from 

custom made wearable sensors.  Stikic et al. [9] applied two 

weakly supervised methods to discover activities from two 

published datasets obtained from wearable sensors.  Wyatt 

et al. [2] described their techniques for mining object 

models from the web and use the information to recognize 

activities based on the interaction of user with objects.  

They attached RFID tags to the objects.  We observed that 

current state-of-art of human activity recognition 

technologies is not cost effective and not suitable in our 

natural living environment.  They either require expensive 

setup, wearable sensors or pre-labeled data. 

Our work is motivated by the intend to create a fully 

autonomous personal intelligent agent, for example a 

personal robot, that is capable of understanding what its 

user, or owner, is doing and consequently provide 

appropriate support.  Therefore, human activity recognition 

lies at the core of such system.  The system should be able 

to be deployed in the natural human living environment 

with minimal changes, at low-cost and work with unlabeled 

data.  Further, the system should not require users to wear 

markers or sensors.  These requirements call for the use of 

low-cost components, lightweight algorithms, marker-less 

vision and/or audio sensors, and unsupervised learning.  

Recently, the availability of low-cost RGBD (RGB-Depth) 

sensors has enabled accurate capture of human poses.  In 

our earlier work [15], [16], we demonstrated the ability of 

K-means to distinguish different activities using just the 

skeleton data obtained from low-cost RGBD sensor, 

Microsoft Kinect.  The problems with the use of K-means 

are the need to specify the number of clusters, k value, 

apriori and such system do not have the ability to reject 

random activities.  Random activities will be assigned to a 

cluster anyway.  In this paper, we propose an approach to 

address these two problems.  We propose an approach to 

perform unsupervised human activity discovery.  The 

approach uses cluster validity indices to evaluate the quality 

of clustering outcome and automatically determines suitable 

number of clusters and evaluates each cluster to identify 

highly homogeneous clusters as new activities. 



2 Proposed approach 

Assuming an intelligent system or agent has been 

observing daily activities of a subject.  An example situation 

is a personal robot accompanying its owner.  The system 

has collected a large pool of unlabeled activity observations 

(data).  To be low cost with minimal requirements, we allow 

the system to be a best-effort one.  The approach resembles 

how children learn activities around them.  Children have 

the ability to distinguish different activities and ask adults to 

label the activities, i.e., they learn from unlabeled data 

(observations) and post-label the model they have formed.  

Children can learn from one subject, e.g., a parent, and 

adapt the model to different subjects.  While there are many 

activities going on, children don’t learn all of them at once.  

Finally, there are times that children are confused with 

similar activities. 

 
Figure 1. Proposed approach for unsupervised activity discovery in human 

activity recognition. 

We propose the following steps to autonomously 

discover new activities, as illustrated in Fig. 1.  The 

different cluster validity indices are described in Section 3. 

1. Collect observations of unknown activities. 

2. Use global internal cluster validity index to estimate 

the number of clusters, k. 

3. Do clustering using the suggested number of 

clusters, ks, from above. 

4. Assess homogeneity of each of the ks clusters using 

local internal cluster validity measure. 

5. Accept high ranking clusters and reject clusters 

ranked low by the validity measure. 

3 Unsupervised learning 

3.1 K-means clustering 

K-means [5] clustering is one of the simplest 

unsupervised learning algorithms.  It looks for similarity 

among the examples in the dataset by using simple distance 

measurement.  Given the required number of clusters, k, K-

means group the points (examples) in the dataset by 

minimizing the distance from each data point to a cluster 

center (centroid).  We have used K-means clustering that 

minimizes the regular cost function given in Eq. (1). 
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where k is the number of clusters,   
( )

 is ith data point in 

Cluster j and    is the centroid of Cluster j, i.e.,   ,    is the 

number of data points in   .  Note that each data point is a 

row vector in all equations presented in this paper. 

3.2 Cluster validation 

We expect the intelligent system to autonomously 

discover new activities and the number of activities to be 

found is unknown to the system.  Various cluster validity 

indices [13] have been proposed to assess the quality of 

clustering outcome and determine the appropriate k.  Since 

we will deal with unlabeled data, we consider only internal 

cluster validity indices that do not require labeled data.  In 

this paper, we tested five indices as given below. 

1. Silhouette (Sil) [10].   For each data point,  (  ) is the 

average distance from the point to other points in its 

cluster, and  (  ) is the average distance from it to all 

points in nearest cluster.  The objective is to maximize 

Sil(k). 
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2. Davies-Bouldin (DB) index [1].   The objective is to 

minimize the DB(k) index. 
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3. Calinski-Harabasz (CH) index [11].  The objective is to 

maximize CH(k). 
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where    ( )  is the (sum-of-square) within-cluster 

scatter matrix and,    ( )  is the (sum-of-square) 

between-cluster scatter matrix as given below: 
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where   is the mean of the whole dataset. 

4. Krzanowski-Lai (KL) index [14].  The objective is to 

maximize KL(k). 
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where   is the dimension (number of variables/features) 

of the data point;       in our case, see Section 4. 

5. Hartigan (Ha) index [3].  The objective is to add cluster 

until Ha is below a threshold.  Ha≤10 is typically used 

and we have used this value in our work reported in this 

paper. 
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where n is the number of data points in whole data set. 

The above indices are global as they consider all clusters 

in the validation.  Even with the value of k given, there is no 

guarantee that K-means as well as any other clustering 

algorithm will group all observations of the same activity 

into same cluster.  To assess the homogeneity, i.e., cohesion 

and compactness of individual cluster, we require local 

internal cluster validity indices.  To assess the homogeneity 

of individual cluster and rank them accordingly, we define 

two measures: the intra-cluster mean variance (  ̅ ) and 

mean joint probability density function ( ̅ ).  Low value of 

 ̅  indicates compactness of the cluster.  The joint 

probability density function assumes that observations of a 

non-random activity should be normally distributed within 

its cluster around the cluster centroid with the standard 

deviation of the cluster.  High value of  ̅  indicates good 

cohesion of the cluster based on assumption of normal 

distribution.  The equations for the two measures are given 

in Equations (13) to (18).  Logarithm is used in Equation 

(17) to compress the range of values. 
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where   
( )
 [           ] is a data point in Cluster    

with dimension p, nj is the number of points in Cluster   , 

 ̅( ) (dimension p) is the mean of all points in Cluster   , ^2 

is element-wise square. 
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where    
( )

is the fth dimension of   
( )

,   
( )

 is the mean 

of values of fth dimension of all points in Cluster   ,   
( )

 is 

the standard deviation of values of fth dimension of all 

points in Cluster   . 

4 Feature extraction 

Feature extraction in the context of this paper is not 

about image processing.  The raw data were coordinates of 

15 joints in human skeleton provided by the application of 

Microsoft Kinect, a low-cost RGBD (RGB-Depth) camera, 

as shown in Fig. 2.  Each activity example was sampled for 

a window of 2 seconds comprising 15 frames.  We found 

empirically [16] that reducing the frames from full 60 

frames to 15 frames did not degrade clustering performance.  

For each frame, the following features were extracted from 

the coordinates of the joint positions: four vectors 

describing body flexion, four vectors describing arms 

abduction, four vectors describing leg abduction and flexion 

and, two vectors describing interaction between hands and 

head.  The vectors were formed locally (between joints) and 

normalized to shoulder width making them view invariant 

to camera and scale invariant to the size of the subject.  

There were 14 3-dimentional vectors giving 14×3=42 

features per frame.  With 42 features per frame, the total 

number of features was 42×15=630 features per activity 

observation. 

 

 
Figure 2. Human skeleton composed from fifteen (15) joint. 



5 Data & experiment 

5.1 Data 

Currently, there are a few [6], [7] publicly available 

skeleton (coordinates of joints) datasets obtained from 

Microsoft Kinect sensor on human activities.  None of these 

datasets have been adapted as benchmarking dataset for 

evaluation of human activity research works.  The work 

presented in this paper used the dataset “Cornell Activity 

Dataset CAD-60” [6].  CAD-60 consisted of twelve daily 

activities: rinsing mouth, brushing teeth, wearing contact 

lens, talking on the phone, drinking water, opening pill 

container, cooking (chopping), cooking (stirring), talking on 

couch, relaxing on couch, writing on whiteboard, working 

on computer.  The data was collected from four different 

subjects: two males (referred as Person 1 and Person 4) and 

two females (referred as Person 2 and Person 3).  One of the 

females is left-handed (Person 3).  Still (standing) and 

random activity samples by each subject are also included in 

the dataset.  All of the data were collected in a regular 

household setting with no occlusion of body from the view 

of sensor.  The CAD-60 dataset comprises of RGB images, 

depth images and skeleton data (coordinates of joint 

positions and orientations).  We have only used the skeleton 

data of the joint positions in our experiment.  We considered 

eight of them as listed in Table I (1 to 4, 6 to 9).  The other 

three activities are not atomic in their dataset.  We refer an 

atomic activity as one that cannot be further decomposed 

into sequence of smaller activities.  For examples, the 

drinking comprised of picking up the cup and drink; rinsing 

mouth comprised of sipping water, gargle and spit; opening 

pill container comprised of lifting the pill box, twist the cap.  

At this stage, we are interested to discover atomic actions or 

lower-level activities, which will be used to discover higher-

level activities eventually.  We also considered the still 

(standing) as one activity.  In total, we considered nine 

activities.  The random activity samples were also used to 

test the ability of our approach to reject random activities.  

Two datasets were composed for each subject as following, 

giving a total of eight datasets in the experiment: (1) P1, P2, 

P3, P4: 50 observations of each of the 9 activities for Person 

1, 2, 3, 4 respectively.  (2) P1R, P2R, P3R, P4R: 100 

observations of random activities in addition to 50 

observations of each of the 9 activities for Person 1, 2, 3, 4 

respectively. 

Table I. List of activities 

1. brushing teeth 
2. cooking (chopping) 

3. cooking (stirring) 

4. relaxing on couch 
5. still (standing) 

6. talking on couch (sitting) 

7. talking on the phone 
8. working on computer 

9. writing on whiteboard 

10. random 

5.2 Experiment 

We conduct the following experiment on each of the 

eight datasets described in Section 5. 

1. Estimate number of clusters, i.e., find ks. 

1.1. Run K-means from k=2 to kmax.  There is no 

concrete guideline for the choice of kmax, however 

many researchers had referred to Mardia et al. [8] as 

stating the rule of thumb for setting   √  ⁄
 

 

where n is the number of data points (observations) 

in the dataset.  We have chosen      √ 
 

 which 

include the value of k suggested by the said rule of 

thumb.  The actual value of kmax is not crucial as we 

will only accept a few highly ranked clusters.  kmax 

can be up to n.  However, it helps to restrict the 

computation time by setting reasonable value of 

kmax. 

1.2. For each value of k, K-means was run for three 

rounds with random initialization (seeded for 

comparison with other values of k) and the 

clustering result with lowest total sum-of-squared-

Euclidean distance from all members to their 

centroid was taken as the result. 

1.3. Compute the global cluster validity indices for all 

values of k in above. 

1.4. Determine the suggested number of clusters, ks, 

based on the global cluster validity test above. 

2. Assess clustering quality (homogeneity) based on ks 

above.  Compute local cluster validity measures for each 

of the ks clusters to accept or reject cluster(s). 

6 Results & discussion 

Table II shows the result of estimating number of 

clusters (value of ks) for K-means using the five cluster 

validity indices for the eight datasets described in Section 5.  

For the purpose of comparison, we compute the overall 

error for each index as given in Eq. (19).  The index with 

lowest error is considered giving best value of ks. 
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where   
  is the k suggested, for dataset P,   

  is the 

expected k for dataset P,   ( ) is the total error for datasets 

without random activities,   ( ) is the total error for datasets 

with random activities. 



Table II. Estimated number of clusters, ks, for K-means using DB, CH, KL, 

Ha and Sil indices for eight datasets. 

 

DB CH KL Ha Sil 

P1 6 8 8 8 6 

P2 6 6 4 14 6 

P3 6 10 20 10 9 

P4 9 9 20 12 9 

et(1) 5.2 3.3 16.4 6.0 4.2 

P1R 5 3 17 11 5 

P2R 17 3 11 11 4 

P3R 10 3 16 12 10 

P4R 3 3 17 10 3 

et(2) 13.7 20.0 6.7 4.2 15.9 

et 18.9 23.3 23.1 10.2 20.1 

 

For datasets without random activities,   
  is 9.  For 

datasets with random activities, we expect   
  to be more 

than 9, however we do not know the exact number.  For the 

purpose of comparison, we have used the average value of 

all ks above 9 for datasets with random activities.  The value 

is 12.9.  While Sil, CH and DB did well on datasets without 

random activities, they performed poorly on datasets with 

random activities that have high variances.  The result 

suggests that Hartigan index was the best choice among the  

 

Figure 3. Confusion matrix without random activities for four subjects. 

five indices.  The values of ks given by Hartigan index were 

used to cluster each dataset and the results are shown in Fig. 

3 and 4.  Fig. 3 shows the confusion matrices for the 

clustering result from the datasets without random activities.  

The rows are the nine activities as listed in Table I (1 to 9).  

The columns are the clusters.  The columns are not merged 

and not sorted to provide a complete picture of the 

clustering result.  Fig. 4 shows the confusion matrices for 

the clustering results from the datasets with random 

activities.  Activity 10 is the group of random activities.  

Table III gives the homogeneity evaluation of the clusters 

for datasets without random activities, i.e., the results shown 

in Fig. 3.  To explain the interpretation of the table, we take 

an example of the results for P1.  The result shows that 

Cluster 3 has been ranked top by both evaluation measures.  

This means Cluster 3 is the most homogeneous according to 

these measures.  Both measures had ranked Cluster 5 at 

second.  Comparing this ranking with the corresponding 

confusion matrix for P1 in Fig. 3, we see that Cluster 3 and  

Table III. Mean variance ( ̅ ) and mean joint probability ( ̅ ) for clustering 

result in Fig. 3, i.e., without random activities, for each subject 

P1  ̅  

 

 ̅  

3 0.0087 3 347.19 

5 0.0860 5 101.34 

2 0.0883 1 63.40 

1 0.129 2 57.23 

6 0.223 8 -2.88 

8 0.230 6 -29.87 

4 0.298 4 -91.74 

7 0.410 7 -124.28 

P2  ̅  

 

 ̅  

1 0.0570 14 127.46 

14 0.0642 1 125.90 

5 0.0935 6 34.74 

6 0.119 12 31.77 

10 0.122 5 20.92 

12 0.132 7 3.77 

7 0.136 2 -7.01 

2 0.145 10 -12.34 

3 0.206 3 -33.63 

13 0.333 11 -43.07 

4 0.336 13 -117.00 

11 0.338 4 -123.47 

9 0.362 8 -148.66 

8 0.452 9 -150.45 

P3  ̅  

 

 ̅  

1 0.0122 1 373.36 

9 0.0429 9 200.09 

5 0.0582 5 143.98 

7 0.0702 7 132.11 

8 0.144 8 30.58 

6 0.186 6 -0.26 

3 0.234 4 -17.88 

4 0.293 3 -34.13 

2 0.320 2 -70.46 

10 0.480 10 -172.85 

P4  ̅  

 

 ̅  

11 0.0568 3 224.33 

8 0.0786 11 162.60 

7 0.114 8 103.68 

6 0.117 6 72.56 

2 0.174 7 30.75 

1 0.179 2 16.10 

5 0.199 5 -37.77 

10 0.249 1 -38.34 

9 0.251 9 -43.79 

4 0.275 10 -64.10 

3 0.358 4 -92.64 

12 0.396 12 -160.00 
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5 concisely captured all 50 observations of Activity 6 

(talking on couch) and 4 (relaxing on couch) respectively.  

In this confusion matrix, Cluster 4, 6 and 7 are weak 

clusters as they contained more than one activity.  

Incidentally, these clusters are ranked low in both measures 

in Table III.  Looking at all results in Table III, we can 

observe that highly ranked clusters are generally 

homogeneous with a few exceptions.  This will not be a 

problem if the objective is to select one or a few highly 

ranked clusters to perform learning.  We also notice that  ̅  

ranked Cluster 3 in P4 low, while  ̅  ranked Cluster 3 on 

top.  Cluster 3 is homogeneous, however, it has only two 

members; logically it should be rejected. 

It will be more interesting to look at the results for 

datasets containing random activities in Table IV and Fig. 4.  

It is encouraging to see that clusters containing significant 

number of random activities have been consistently ranked 

at the bottom.  For P1R, Cluster 3, 9 and 10 contain 

significant number of random activities and have been 

ranked at the bottom in corresponding section (P1R) in 

Table IV.  For P2R, Cluster 7, 8, 9 and 11 are ranked at the 

bottom.  Cluster 2 should be rejected as well, and has been 

ranked low just above those clusters with random activities.  

For P3R, Cluster 4, 5, 8, and 12 are ranked at the bottom, 

while Cluster 3 come slightly above them.  Ideally, Cluster 

3 should be ranked low as it should be rejected.  

Nevertheless, clusters ranked on top remain correctly 

identified from homogenous clusters.  For P4R, Cluster 3, 5, 

6, 7 and 9 are ranked at the bottom.  In all datasets, the first 

few clusters on top are homogenous, apart from Cluster 8 in 

P4R.  However, for Cluster 8 in P4R, having 2 random 

activities with 50 observations of Activity 3 (stirring) is not 

expected to cause problem in learning phase. 

Referring to Table IV, for each of the homogeneity 

measure, is there any threshold we can use to identify 

homogeneous clusters confidently, i.e., to accept the 

clusters?  We find the value for each measure in each 

dataset where the first cluster from the top is to be rejected.  

For P1R, the highest cluster to reject is Cluster 2 and the 

corresponding values for each measure are:  ̅  less than 

0.0881 and  ̅  higher than 13.98.  For P2R, the highest 

cluster to reject is Cluster 2 and the corresponding values 

for each measure are:  ̅  less than 0.268 and  ̅  higher than 

−112.  For P3R, the highest cluster to reject is Cluster 3 and 

the corresponding values for each measure are:  ̅  less than 

0.255 and  ̅  higher than −139.15.  For P4R, the highest 

cluster to reject is Cluster 5 and the corresponding values 

for each measure are:  ̅  less than 0.458 and  ̅  higher than 

−183.  To obtain a threshold value applicable to all subjects 

so that non-homogeneous clusters will be rejected, we 

require that  ̅  to be less than 0.0881 (lowest of all) and  ̅  

to be higher than 13.98 (highest of all).  Applying these 

threshold to all datasets in Table IV, we identified the 

number of top few homogeneous clusters.  The result is 

shown in Table V.  The  ̅  measure has identified more 

clusters to accept. 

 

Figure 4. Confusion matrix with random activities for four subjects. 

7 Conclusion 

In this paper, we proposed an approach to automatically 

discover new activities without priori.  We demonstrated the 

feasibility of the approach through experimental 

investigation on daily activity datasets from third party.  

The results showed that Hartigan index could assist to 

estimate the possible number of clusters, or k value, in a 

pool of unlabeled observations of activities for each subject.  

Given the estimation of k, k clusters were obtained using K-

means.  The clustering outcomes were assessed using two 

measures of cluster homogeneity.  The results showed both 

measures consistently ranked highly homogeneous clusters 

on top while ranking clusters with significant number of 

random activities at the bottom.  It was also observed that 
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the mean joint probability density function  ̅  measure has 

the potential to use a threshold value to assist in deciding 

how many highly homogeneous clusters can be accepted for 

subsequent learning phase.  This is an ability to discover 

new activities (clusters) autonomously.  The model of each 

of the discovered new activities (clusters) can then be 

learned using supervised learning algorithm.  Armed with 

this ability, an intelligent system can self-learn and perform 

unsupervised human activity recognition.  

Table IV. Mean variance ( ̅ ) and mean joint probability ( ̅ ) for clustering 

result in Fig. 4, i.e., with random activities, for each subject. 

P1R  ̅  

 

 ̅  

4 0.00568 4 393.91 

5 0.0374 5 157.31 

7 0.0548 11 148.07 

1 0.0623 7 142.36 

8 0.0733 8 111.28 

11 0.0768 1 104.60 

2 0.0881 2 13.98 

6 0.537 6 -236.60 

3 0.599 3 -258.12 

9 1.04 9 -274.26 

10 1.20 10 -344.00 

P2R  ̅  

 

 ̅  

1 0.0341 1 180.34 

10 0.0651 10 73.80 

5 0.113 5 15.84 

6 0.159 6 -46.06 

4 0.207 3 -46.25 

3 0.240 4 -96.32 

2 0.268 2 -112.31 

8 0.313 8 -185.44 

9 0.939 9 -295.41 

11 1.15 11 -342.36 

7 1.26 7 -352.73 

P3R  ̅  

 

 ̅  

7 0.0249 7 258.57 

2 0.0336 2 202.46 

1 0.0404 1 190.59 

10 0.144 10 24.35 

9 0.225 11 -6.07 

11 0.252 9 -115.99 

3 0.255 6 -133.27 

6 0.291 3 -139.15 

4 0.308 4 -161.39 

12 1.12 12 -317.39 

8 1.18 8 -333.79 

5 1.35 5 -361.30 

P4R  ̅  

 

 ̅  

10 0.0482 10 157.73 

4 0.131 1 -0.51 

8 0.135 4 -11.41 

1 0.151 8 -13.94 

2 0.159 2 -23.20 

6 0.367 6 -167.71 

5 0.458 5 -182.96 

3 0.628 3 -267.60 

7 1.14 7 -325.54 

9 1.32 9 -357.62 

 
Table V. Number of accepted clusters based on threshold value for each 

measure. 

Number of accepted clusters 

 

  ̅          ̅        

P1R  6 7 

P2R  2 3 

P3R  3 4 

P4R  1 1 
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